Language model crossover: Variation through few-shot prompting

E Meyerson, MJ Nelson, H Bradley, A Gaier… - ACM Transactions on …, 2024 - dl.acm.org
This article pursues the insight that language models naturally enable an intelligent variation
operator similar in spirit to evolutionary crossover. In particular, language models of …

Small solutions for real-world symbolic regression using denoising autoencoder genetic programming

D Wittenberg, F Rothlauf - … Conference on Genetic Programming (Part of …, 2023 - Springer
Abstract Denoising Autoencoder Genetic Programming (DAE-GP) is a model-based
evolutionary algorithm that uses denoising autoencoder long short-term memory networks …

Denoising autoencoder genetic programming: strategies to control exploration and exploitation in search

D Wittenberg, F Rothlauf, C Gagné - Genetic Programming and Evolvable …, 2023 - Springer
Denoising autoencoder genetic programming (DAE-GP) is a novel neural network-based
estimation of distribution genetic programming approach that uses denoising autoencoder …

Transformer Semantic Genetic Programming for Symbolic Regression

P Anthes, D Sobania, F Rothlauf - arxiv preprint arxiv:2501.18479, 2025 - arxiv.org
In standard genetic programming (stdGP), solutions are varied by modifying their syntax,
with uncertain effects on their semantics. Geometric-semantic genetic programming (GSGP) …

Pretraining reduces runtime in denoising autoencoder genetic programming by an order of magnitude

J Reiter, D Schweim, D Wittenberg - Proceedings of the Companion …, 2023 - dl.acm.org
Denoising autoencoder genetic programming (DAE-GP) is an estimation of distribution
genetic programming (EDA-GP) algorithm. It uses denoising autoencoder long short-term …

Denoising autoencoder genetic programming for real-world symbolic regression

D Wittenberg, F Rothlauf - Proceedings of the Genetic and Evolutionary …, 2022 - dl.acm.org
Denoising Autoencoder Genetic Programming (DAE-GP) is a novel neural-network based
estimation of distribution genetic programming algorithm that uses denoising autoencoder …

Tree Variational Autoencoder for Code

V Liventsev, S De Bruin, A Härmä, M Petković - IEEE Access, 2025 - ieeexplore.ieee.org
Autoencoder models of source code are an emerging alternative to autoregressive large
language models with important benefits for genetic improvement of software. We …