Delving into the devils of bird's-eye-view perception: A review, evaluation and recipe
Learning powerful representations in bird's-eye-view (BEV) for perception tasks is trending
and drawing extensive attention both from industry and academia. Conventional …
and drawing extensive attention both from industry and academia. Conventional …
3D object detection for autonomous driving: A comprehensive survey
Autonomous driving, in recent years, has been receiving increasing attention for its potential
to relieve drivers' burdens and improve the safety of driving. In modern autonomous driving …
to relieve drivers' burdens and improve the safety of driving. In modern autonomous driving …
Tri-perspective view for vision-based 3d semantic occupancy prediction
Modern methods for vision-centric autonomous driving perception widely adopt the bird's-
eye-view (BEV) representation to describe a 3D scene. Despite its better efficiency than …
eye-view (BEV) representation to describe a 3D scene. Despite its better efficiency than …
Occ3d: A large-scale 3d occupancy prediction benchmark for autonomous driving
Robotic perception requires the modeling of both 3D geometry and semantics. Existing
methods typically focus on estimating 3D bounding boxes, neglecting finer geometric details …
methods typically focus on estimating 3D bounding boxes, neglecting finer geometric details …
Surroundocc: Multi-camera 3d occupancy prediction for autonomous driving
Abstract 3D scene understanding plays a vital role in vision-based autonomous driving.
While most existing methods focus on 3D object detection, they have difficulty describing …
While most existing methods focus on 3D object detection, they have difficulty describing …
Exploring object-centric temporal modeling for efficient multi-view 3d object detection
In this paper, we propose a long-sequence modeling framework, named StreamPETR, for
multi-view 3D object detection. Built upon the sparse query design in the PETR series, we …
multi-view 3D object detection. Built upon the sparse query design in the PETR series, we …
DriveDreamer: Towards Real-World-Drive World Models for Autonomous Driving
World models, especially in autonomous driving, are trending and drawing extensive
attention due to their capacity for comprehending driving environments. The established …
attention due to their capacity for comprehending driving environments. The established …
Bevdepth: Acquisition of reliable depth for multi-view 3d object detection
In this research, we propose a new 3D object detector with a trustworthy depth estimation,
dubbed BEVDepth, for camera-based Bird's-Eye-View~(BEV) 3D object detection. Our work …
dubbed BEVDepth, for camera-based Bird's-Eye-View~(BEV) 3D object detection. Our work …
Bevformer v2: Adapting modern image backbones to bird's-eye-view recognition via perspective supervision
We present a novel bird's-eye-view (BEV) detector with perspective supervision, which
converges faster and better suits modern image backbones. Existing state-of-the-art BEV …
converges faster and better suits modern image backbones. Existing state-of-the-art BEV …
Bevfusion: Multi-task multi-sensor fusion with unified bird's-eye view representation
Multi-sensor fusion is essential for an accurate and reliable autonomous driving system.
Recent approaches are based on point-level fusion: augmenting the LiDAR point cloud with …
Recent approaches are based on point-level fusion: augmenting the LiDAR point cloud with …