Commercialization of lithium battery technologies for electric vehicles

X Zeng, M Li, D Abd El‐Hady, W Alshitari… - Advanced Energy …, 2019 - Wiley Online Library
The currently commercialized lithium‐ion batteries have allowed for the creation of practical
electric vehicles, simultaneously satisfying many stringent milestones in energy density …

Prospect and reality of Ni‐rich cathode for commercialization

J Kim, H Lee, H Cha, M Yoon, M Park… - Advanced energy …, 2018 - Wiley Online Library
The layered nickel‐rich cathode materials are considered as promising cathode materials
for lithium‐ion batteries (LIBs) due to their high reversible capacity and low cost. However …

The development and future of lithium ion batteries

GE Blomgren - Journal of The Electrochemical Society, 2016 - iopscience.iop.org
This year, the battery industry celebrates the 25 th anniversary of the introduction of the
lithium ion rechargeable battery by Sony Corporation. The discovery of the system dates …

Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives

ST Myung, F Maglia, KJ Park, CS Yoon… - ACS Energy …, 2017 - ACS Publications
Future generations of electric vehicles require driving ranges of at least 300 miles to
successfully penetrate the mass consumer market. A significant improvement in the energy …

Valuation of surface coatings in high-energy density lithium-ion battery cathode materials

U Nisar, N Muralidharan, R Essehli, R Amin… - Energy Storage …, 2021 - Elsevier
Artificial barriers, usually with either electrochemically active or inactive coating materials,
are deployed on cathode material surfaces to mitigate detrimental side reactions by …

Degradation mechanisms and mitigation strategies of nickel-rich NMC-based lithium-ion batteries

T Li, XZ Yuan, L Zhang, D Song, K Shi… - Electrochemical Energy …, 2020 - Springer
The demand for lithium-ion batteries (LIBs) with high mass-specific capacities, high rate
capabilities and long-term cyclabilities is driving the research and development of LIBs with …

Ni‐rich/Co‐poor layered cathode for automotive Li‐ion batteries: promises and challenges

X Wang, YL Ding, YP Deng… - Advanced Energy …, 2020 - Wiley Online Library
To pursue a higher energy density (> 300 Wh kg− 1 at the cell level) and a lower cost (<
$125 kWh− 1 expected at 2022) of Li‐ion batteries for making electric vehicles (EVs) long …

Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes

GL Xu, Q Liu, KKS Lau, Y Liu, X Liu, H Gao, X Zhou… - Nature Energy, 2019 - nature.com
Despite their relatively high capacity, layered lithium transition metal oxides suffer from
crystal and interfacial structural instability under aggressive electrochemical and thermal …

Designing principle for Ni-rich cathode materials with high energy density for practical applications

Y **a, J Zheng, C Wang, M Gu - Nano Energy, 2018 - Elsevier
Nickel (Ni)-rich lithium transition metal oxides (eg LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA), LiNi
1− x− y Mn x Co y O 2 (x+ y< 1)(NMC)) with layered structure are regarded as promising …

Chemical, structural, and electronic aspects of formation and degradation behavior on different length scales of Ni‐rich NCM and Li‐rich HE‐NCM cathode materials …

L de Biasi, B Schwarz, T Brezesinski… - Advanced …, 2019 - Wiley Online Library
In order to satisfy the energy demands of the electromobility market, both Ni‐rich and Li‐rich
layered oxides of NCM type are receiving much attention as high‐energy‐density cathode …