Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
The evolution of distributed systems for graph neural networks and their origin in graph processing and deep learning: A survey
Graph neural networks (GNNs) are an emerging research field. This specialized deep
neural network architecture is capable of processing graph structured data and bridges the …
neural network architecture is capable of processing graph structured data and bridges the …
A survey of graph neural networks in various learning paradigms: methods, applications, and challenges
In the last decade, deep learning has reinvigorated the machine learning field. It has solved
many problems in computer vision, speech recognition, natural language processing, and …
many problems in computer vision, speech recognition, natural language processing, and …
Temporal graph benchmark for machine learning on temporal graphs
Abstract We present the Temporal Graph Benchmark (TGB), a collection of challenging and
diverse benchmark datasets for realistic, reproducible, and robust evaluation of machine …
diverse benchmark datasets for realistic, reproducible, and robust evaluation of machine …
Graph neural networks: foundation, frontiers and applications
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …
recent years. Graph neural networks, also known as deep learning on graphs, graph …
Towards better dynamic graph learning: New architecture and unified library
We propose DyGFormer, a new Transformer-based architecture for dynamic graph learning.
DyGFormer is conceptually simple and only needs to learn from nodes' historical first-hop …
DyGFormer is conceptually simple and only needs to learn from nodes' historical first-hop …
ROLAND: graph learning framework for dynamic graphs
Graph Neural Networks (GNNs) have been successfully applied to many real-world static
graphs. However, the success of static graphs has not fully translated to dynamic graphs due …
graphs. However, the success of static graphs has not fully translated to dynamic graphs due …
Temporal graph networks for deep learning on dynamic graphs
Graph Neural Networks (GNNs) have recently become increasingly popular due to their
ability to learn complex systems of relations or interactions arising in a broad spectrum of …
ability to learn complex systems of relations or interactions arising in a broad spectrum of …
Do we really need complicated model architectures for temporal networks?
Recurrent neural network (RNN) and self-attention mechanism (SAM) are the de facto
methods to extract spatial-temporal information for temporal graph learning. Interestingly, we …
methods to extract spatial-temporal information for temporal graph learning. Interestingly, we …
Towards better evaluation for dynamic link prediction
Despite the prevalence of recent success in learning from static graphs, learning from time-
evolving graphs remains an open challenge. In this work, we design new, more stringent …
evolving graphs remains an open challenge. In this work, we design new, more stringent …
Gadbench: Revisiting and benchmarking supervised graph anomaly detection
With a long history of traditional Graph Anomaly Detection (GAD) algorithms and recently
popular Graph Neural Networks (GNNs), it is still not clear (1) how they perform under a …
popular Graph Neural Networks (GNNs), it is still not clear (1) how they perform under a …