A survey of android malware detection with deep neural models

J Qiu, J Zhang, W Luo, L Pan, S Nepal… - ACM Computing Surveys …, 2020 - dl.acm.org
Deep Learning (DL) is a disruptive technology that has changed the landscape of cyber
security research. Deep learning models have many advantages over traditional Machine …

The evolution of android malware and android analysis techniques

K Tam, A Feizollah, NB Anuar, R Salleh… - ACM Computing …, 2017 - dl.acm.org
With the integration of mobile devices into daily life, smartphones are privy to increasing
amounts of sensitive information. Sophisticated mobile malware, particularly Android …

Significant permission identification for machine-learning-based android malware detection

J Li, L Sun, Q Yan, Z Li, W Srisa-An… - IEEE Transactions on …, 2018 - ieeexplore.ieee.org
The alarming growth rate of malicious apps has become a serious issue that sets back the
prosperous mobile ecosystem. A recent report indicates that a new malicious app for …

Enhancing state-of-the-art classifiers with api semantics to detect evolved android malware

X Zhang, Y Zhang, M Zhong, D Ding, Y Cao… - Proceedings of the …, 2020 - dl.acm.org
Machine learning (ML) classifiers have been widely deployed to detect Android malware,
but at the same time the application of ML classifiers also faces an emerging problem. The …

Droidcat: Effective android malware detection and categorization via app-level profiling

H Cai, N Meng, B Ryder, D Yao - IEEE Transactions on …, 2018 - ieeexplore.ieee.org
Most existing Android malware detection and categorization techniques are static
approaches, which suffer from evasion attacks, such as obfuscation. By analyzing program …

A survey of app store analysis for software engineering

W Martin, F Sarro, Y Jia, Y Zhang… - IEEE transactions on …, 2016 - ieeexplore.ieee.org
App Store Analysis studies information about applications obtained from app stores. App
stores provide a wealth of information derived from users that would not exist had the …

Mamadroid: Detecting android malware by building markov chains of behavioral models (extended version)

L Onwuzurike, E Mariconti, P Andriotis… - ACM Transactions on …, 2019 - dl.acm.org
As Android has become increasingly popular, so has malware targeting it, thus motivating
the research community to propose different detection techniques. However, the constant …

Static analysis of android apps: A systematic literature review

L Li, TF Bissyandé, M Papadakis, S Rasthofer… - Information and …, 2017 - Elsevier
Context Static analysis exploits techniques that parse program source code or bytecode,
often traversing program paths to check some program properties. Static analysis …

Mamadroid: Detecting android malware by building markov chains of behavioral models

E Mariconti, L Onwuzurike, P Andriotis… - arxiv preprint arxiv …, 2016 - arxiv.org
The rise in popularity of the Android platform has resulted in an explosion of malware threats
targeting it. As both Android malware and the operating system itself constantly evolve, it is …

{SmartAuth}:{User-Centered} authorization for the internet of things

Y Tian, N Zhang, YH Lin, XF Wang, B Ur… - 26th USENIX Security …, 2017 - usenix.org
Internet of Things (IoT) platforms often require users to grant permissions to third-party apps,
such as the ability to control a lock. Unfortunately, because few users act based upon, or …