A brief overview of ChatGPT: The history, status quo and potential future development
ChatGPT, an artificial intelligence generated content (AIGC) model developed by OpenAI,
has attracted world-wide attention for its capability of dealing with challenging language …
has attracted world-wide attention for its capability of dealing with challenging language …
[HTML][HTML] Deep learning, reinforcement learning, and world models
Deep learning (DL) and reinforcement learning (RL) methods seem to be a part of
indispensable factors to achieve human-level or super-human AI systems. On the other …
indispensable factors to achieve human-level or super-human AI systems. On the other …
Outracing champion Gran Turismo drivers with deep reinforcement learning
Many potential applications of artificial intelligence involve making real-time decisions in
physical systems while interacting with humans. Automobile racing represents an extreme …
physical systems while interacting with humans. Automobile racing represents an extreme …
Daydreamer: World models for physical robot learning
To solve tasks in complex environments, robots need to learn from experience. Deep
reinforcement learning is a common approach to robot learning but requires a large amount …
reinforcement learning is a common approach to robot learning but requires a large amount …
Social physics
Recent decades have seen a rise in the use of physics methods to study different societal
phenomena. This development has been due to physicists venturing outside of their …
phenomena. This development has been due to physicists venturing outside of their …
Efficient online reinforcement learning with offline data
Sample efficiency and exploration remain major challenges in online reinforcement learning
(RL). A powerful approach that can be applied to address these issues is the inclusion of …
(RL). A powerful approach that can be applied to address these issues is the inclusion of …
Reinforcement learning algorithms: A brief survey
Reinforcement Learning (RL) is a machine learning (ML) technique to learn sequential
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …
Cal-ql: Calibrated offline rl pre-training for efficient online fine-tuning
A compelling use case of offline reinforcement learning (RL) is to obtain a policy initialization
from existing datasets followed by fast online fine-tuning with limited interaction. However …
from existing datasets followed by fast online fine-tuning with limited interaction. However …
The primacy bias in deep reinforcement learning
This work identifies a common flaw of deep reinforcement learning (RL) algorithms: a
tendency to rely on early interactions and ignore useful evidence encountered later …
tendency to rely on early interactions and ignore useful evidence encountered later …
How to train your robot with deep reinforcement learning: lessons we have learned
Deep reinforcement learning (RL) has emerged as a promising approach for autonomously
acquiring complex behaviors from low-level sensor observations. Although a large portion of …
acquiring complex behaviors from low-level sensor observations. Although a large portion of …