Kantorovich problem of optimal transportation of measures: new directions of research

VI Bogachev - Uspekhi Matematicheskikh Nauk, 2022 - mathnet.ru
VI Bogachev, “Kantorovich problem of optimal transportation of measures: new directions of
research”, Uspekhi Mat. Nauk, 77:5(467) (2022), 3–52; Russian Math. Surveys, 77:5 (2022) …

Building the bridge of schrödinger: A continuous entropic optimal transport benchmark

N Gushchin, A Kolesov, P Mokrov… - Advances in …, 2023 - proceedings.neurips.cc
Over the last several years, there has been significant progress in develo** neural solvers
for the Schrödinger Bridge (SB) problem and applying them to generative modelling. This …

The Wasserstein space of stochastic processes

D Bartl, M Beiglböck, G Pammer - Journal of the European Mathematical …, 2024 - ems.press
Wasserstein distance induces a natural Riemannian structure for the probabilities on the
Euclidean space. This insight of classical transport theory is fundamental for tremendous …

Shifted composition I: Harnack and reverse transport inequalities

JM Altschuler, S Chewi - IEEE Transactions on Information …, 2024 - ieeexplore.ieee.org
We formulate a new information-theoretic principle—the shifted composition rule—which
bounds the divergence (eg, Kullback-Leibler or Rényi) between the laws of two stochastic …

Задача Канторовича оптимальной транспортировки мер: новые направления исследований

ВИ Богачев - Успехи математических наук, 2022 - mathnet.ru
В работе дан обзор исследований последнего десятилетия и приведены новые
результаты по различным новым модификациям классической задачи Канторовича …

Risk measures based on weak optimal transport

M Kupper, M Nendel, A Sgarabottolo - Quantitative Finance, 2024 - Taylor & Francis
In this paper, we study convex risk measures with weak optimal transport penalties. In a first
step, we show that these risk measures allow for an explicit representation via a nonlinear …

Weak transport for non‐convex costs and model‐independence in a fixed‐income market

B Acciaio, M Beiglböck, G Pammer - Mathematical Finance, 2021 - Wiley Online Library
We consider a model‐independent pricing problem in a fixed‐income market and show that
it leads to a weak optimal transport problem as introduced by Gozlan et al. We use this to …

Martingale transports and Monge maps

M Nutz, R Wang, Z Zhang - The Annals of Applied Probability, 2024 - projecteuclid.org
It is well known that martingale transport plans between marginals μ≠ ν are never given by
Monge maps—with the understanding that the map is over the first marginal μ, or forward in …

Entropic Semi-Martingale Optimal Transport

JD Benamou, G Chazareix, M Hoffmann… - arxiv preprint arxiv …, 2024 - arxiv.org
Entropic Optimal Transport (EOT), also referred to as the Schr\" odinger problem, seeks to
find a random processes with prescribed initial/final marginals and with minimal relative …

Hausdorff distances between couplings and optimal transportation

VI Bogachev, SN Popova - Matematicheskii Sbornik, 2024 - mathnet.ru
VI Bogachev, SN Popova, “Hausdorff distances between couplings and optimal transportation”,
Mat. Sb., 215:1 (2024), 33–58; Sb. Math., 215:1 (2024), 28–51 Sbornik: Mathematics RUS …