A survey on deep learning and its applications

S Dong, P Wang, K Abbas - Computer Science Review, 2021 - Elsevier
Deep learning, a branch of machine learning, is a frontier for artificial intelligence, aiming to
be closer to its primary goal—artificial intelligence. This paper mainly adopts the summary …

Graph neural networks in recommender systems: a survey

S Wu, F Sun, W Zhang, X **e, B Cui - ACM Computing Surveys, 2022 - dl.acm.org
With the explosive growth of online information, recommender systems play a key role to
alleviate such information overload. Due to the important application value of recommender …

Lightgcn: Simplifying and powering graph convolution network for recommendation

X He, K Deng, X Wang, Y Li, Y Zhang… - Proceedings of the 43rd …, 2020 - dl.acm.org
Graph Convolution Network (GCN) has become new state-of-the-art for collaborative
filtering. Nevertheless, the reasons of its effectiveness for recommendation are not well …

A comprehensive survey on graph neural networks

Z Wu, S Pan, F Chen, G Long, C Zhang… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
Deep learning has revolutionized many machine learning tasks in recent years, ranging
from image classification and video processing to speech recognition and natural language …

Open graph benchmark: Datasets for machine learning on graphs

W Hu, M Fey, M Zitnik, Y Dong, H Ren… - Advances in neural …, 2020 - proceedings.neurips.cc
Abstract We present the Open Graph Benchmark (OGB), a diverse set of challenging and
realistic benchmark datasets to facilitate scalable, robust, and reproducible graph machine …

[HTML][HTML] Graph neural networks: A review of methods and applications

J Zhou, G Cui, S Hu, Z Zhang, C Yang, Z Liu, L Wang… - AI open, 2020 - Elsevier
Lots of learning tasks require dealing with graph data which contains rich relation
information among elements. Modeling physics systems, learning molecular fingerprints …

Self-supervised graph learning for recommendation

J Wu, X Wang, F Feng, X He, L Chen, J Lian… - Proceedings of the 44th …, 2021 - dl.acm.org
Representation learning on user-item graph for recommendation has evolved from using
single ID or interaction history to exploiting higher-order neighbors. This leads to the …

Neural graph collaborative filtering

X Wang, X He, M Wang, F Feng, TS Chua - Proceedings of the 42nd …, 2019 - dl.acm.org
Learning vector representations (aka. embeddings) of users and items lies at the core of
modern recommender systems. Ranging from early matrix factorization to recently emerged …

Machine learning methods for small data challenges in molecular science

B Dou, Z Zhu, E Merkurjev, L Ke, L Chen… - Chemical …, 2023 - ACS Publications
Small data are often used in scientific and engineering research due to the presence of
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …

Inductive representation learning on large graphs

W Hamilton, Z Ying, J Leskovec - Advances in neural …, 2017 - proceedings.neurips.cc
Low-dimensional embeddings of nodes in large graphs have proved extremely useful in a
variety of prediction tasks, from content recommendation to identifying protein functions …