Domain adaptation for medical image analysis: a survey
Machine learning techniques used in computer-aided medical image analysis usually suffer
from the domain shift problem caused by different distributions between source/reference …
from the domain shift problem caused by different distributions between source/reference …
Advances and challenges in meta-learning: A technical review
A Vettoruzzo, MR Bouguelia… - IEEE transactions on …, 2024 - ieeexplore.ieee.org
Meta-learning empowers learning systems with the ability to acquire knowledge from
multiple tasks, enabling faster adaptation and generalization to new tasks. This review …
multiple tasks, enabling faster adaptation and generalization to new tasks. This review …
Swad: Domain generalization by seeking flat minima
Abstract Domain generalization (DG) methods aim to achieve generalizability to an unseen
target domain by using only training data from the source domains. Although a variety of DG …
target domain by using only training data from the source domains. Although a variety of DG …
A review on generative adversarial networks: Algorithms, theory, and applications
Generative adversarial networks (GANs) have recently become a hot research topic;
however, they have been studied since 2014, and a large number of algorithms have been …
however, they have been studied since 2014, and a large number of algorithms have been …
A comprehensive survey on transfer learning
Transfer learning aims at improving the performance of target learners on target domains by
transferring the knowledge contained in different but related source domains. In this way, the …
transferring the knowledge contained in different but related source domains. In this way, the …
Balancing discriminability and transferability for source-free domain adaptation
Conventional domain adaptation (DA) techniques aim to improve domain transferability by
learning domain-invariant representations; while concurrently preserving the task …
learning domain-invariant representations; while concurrently preserving the task …
Three approaches for personalization with applications to federated learning
The standard objective in machine learning is to train a single model for all users. However,
in many learning scenarios, such as cloud computing and federated learning, it is possible …
in many learning scenarios, such as cloud computing and federated learning, it is possible …
How neural networks extrapolate: From feedforward to graph neural networks
We study how neural networks trained by gradient descent extrapolate, ie, what they learn
outside the support of the training distribution. Previous works report mixed empirical results …
outside the support of the training distribution. Previous works report mixed empirical results …
Learning robust global representations by penalizing local predictive power
Despite their renowned in-domain predictive power, convolutional neural networks are
known to rely more on high-frequency patterns that humans deem superficial than on low …
known to rely more on high-frequency patterns that humans deem superficial than on low …
Moment matching for multi-source domain adaptation
Conventional unsupervised domain adaptation (UDA) assumes that training data are
sampled from a single domain. This neglects the more practical scenario where training data …
sampled from a single domain. This neglects the more practical scenario where training data …