Promising directions of machine learning for partial differential equations

SL Brunton, JN Kutz - Nature Computational Science, 2024 - nature.com
Partial differential equations (PDEs) are among the most universal and parsimonious
descriptions of natural physical laws, capturing a rich variety of phenomenology and …

[HTML][HTML] Deep learning to replace, improve, or aid CFD analysis in built environment applications: A review

G Calzolari, W Liu - Building and Environment, 2021 - Elsevier
Fast and accurate airflow simulations in the built environment are critical to provide
acceptable thermal comfort and air quality to the occupants. Computational Fluid Dynamics …

Review of machine learning for hydrodynamics, transport, and reactions in multiphase flows and reactors

LT Zhu, XZ Chen, B Ouyang, WC Yan… - Industrial & …, 2022 - ACS Publications
Artificial intelligence (AI), machine learning (ML), and data science are leading to a
promising transformative paradigm. ML, especially deep learning and physics-informed ML …

Unsupervised deep learning for super-resolution reconstruction of turbulence

H Kim, J Kim, S Won, C Lee - Journal of Fluid Mechanics, 2021 - cambridge.org
Recent attempts to use deep learning for super-resolution reconstruction of turbulent flows
have used supervised learning, which requires paired data for training. This limitation …

Uncovering near-wall blood flow from sparse data with physics-informed neural networks

A Arzani, JX Wang, RM D'Souza - Physics of Fluids, 2021 - pubs.aip.org
Near-wall blood flow and wall shear stress (WSS) regulate major forms of cardiovascular
disease, yet they are challenging to quantify with high fidelity. Patient-specific computational …

A physics-informed diffusion model for high-fidelity flow field reconstruction

D Shu, Z Li, AB Farimani - Journal of Computational Physics, 2023 - Elsevier
Abstract Machine learning models are gaining increasing popularity in the domain of fluid
dynamics for their potential to accelerate the production of high-fidelity computational fluid …

Perspectives on machine learning-augmented Reynolds-averaged and large eddy simulation models of turbulence

K Duraisamy - Physical Review Fluids, 2021 - APS
This work presents a review and perspectives on recent developments in the use of machine
learning (ML) to augment Reynolds-averaged Navier-Stokes (RANS) and large eddy …

[HTML][HTML] Super-resolution and denoising of fluid flow using physics-informed convolutional neural networks without high-resolution labels

H Gao, L Sun, JX Wang - Physics of Fluids, 2021 - pubs.aip.org
High-resolution (HR) information of fluid flows, although preferable, is usually less
accessible due to limited computational or experimental resources. In many cases, fluid data …

Super-resolution analysis via machine learning: a survey for fluid flows

K Fukami, K Fukagata, K Taira - Theoretical and Computational Fluid …, 2023 - Springer
This paper surveys machine-learning-based super-resolution reconstruction for vortical
flows. Super resolution aims to find the high-resolution flow fields from low-resolution data …

Convolutional neural network and long short-term memory based reduced order surrogate for minimal turbulent channel flow

T Nakamura, K Fukami, K Hasegawa, Y Nabae… - Physics of …, 2021 - pubs.aip.org
We investigate the applicability of the machine learning based reduced order model (ML-
ROM) to three-dimensional complex flows. As an example, we consider a turbulent channel …