[HTML][HTML] Data augmentation: A comprehensive survey of modern approaches

A Mumuni, F Mumuni - Array, 2022 - Elsevier
To ensure good performance, modern machine learning models typically require large
amounts of quality annotated data. Meanwhile, the data collection and annotation processes …

GAN-based anomaly detection: A review

X **a, X Pan, N Li, X He, L Ma, X Zhang, N Ding - Neurocomputing, 2022 - Elsevier
Supervised learning algorithms have shown limited use in the field of anomaly detection due
to the unpredictability and difficulty in acquiring abnormal samples. In recent years …

A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications

L Alzubaidi, J Bai, A Al-Sabaawi, J Santamaría… - Journal of Big Data, 2023 - Springer
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a
large amount of data to achieve exceptional performance. Unfortunately, many applications …

Simplenet: A simple network for image anomaly detection and localization

Z Liu, Y Zhou, Y Xu, Z Wang - Proceedings of the IEEE/CVF …, 2023 - openaccess.thecvf.com
We propose a simple and application-friendly network (called SimpleNet) for detecting and
localizing anomalies. SimpleNet consists of four components:(1) a pre-trained Feature …

Anomaly detection via reverse distillation from one-class embedding

H Deng, X Li - Proceedings of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
Abstract Knowledge distillation (KD) achieves promising results on the challenging problem
of unsupervised anomaly detection (AD). The representation discrepancy of anomalies in …

Openood: Benchmarking generalized out-of-distribution detection

J Yang, P Wang, D Zou, Z Zhou… - Advances in …, 2022 - proceedings.neurips.cc
Abstract Out-of-distribution (OOD) detection is vital to safety-critical machine learning
applications and has thus been extensively studied, with a plethora of methods developed in …

Generalized out-of-distribution detection: A survey

J Yang, K Zhou, Y Li, Z Liu - International Journal of Computer Vision, 2024 - Springer
Abstract Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of
machine learning systems. For instance, in autonomous driving, we would like the driving …

Spot-the-difference self-supervised pre-training for anomaly detection and segmentation

Y Zou, J Jeong, L Pemula, D Zhang… - European Conference on …, 2022 - Springer
Visual anomaly detection is commonly used in industrial quality inspection. In this paper, we
present a new dataset as well as a new self-supervised learning method for ImageNet pre …

Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows

D Gudovskiy, S Ishizaka… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Unsupervised anomaly detection with localization has many practical applications when
labeling is infeasible and, moreover, when anomaly examples are completely missing in the …

A unified model for multi-class anomaly detection

Z You, L Cui, Y Shen, K Yang, X Lu… - Advances in Neural …, 2022 - proceedings.neurips.cc
Despite the rapid advance of unsupervised anomaly detection, existing methods require to
train separate models for different objects. In this work, we present UniAD that accomplishes …