[HTML][HTML] The variational quantum eigensolver: a review of methods and best practices
The variational quantum eigensolver (or VQE), first developed by Peruzzo et al.(2014), has
received significant attention from the research community in recent years. It uses the …
received significant attention from the research community in recent years. It uses the …
Noisy intermediate-scale quantum algorithms
A universal fault-tolerant quantum computer that can efficiently solve problems such as
integer factorization and unstructured database search requires millions of qubits with low …
integer factorization and unstructured database search requires millions of qubits with low …
Practical quantum advantage in quantum simulation
The development of quantum computing across several technologies and platforms has
reached the point of having an advantage over classical computers for an artificial problem …
reached the point of having an advantage over classical computers for an artificial problem …
Challenges and opportunities in quantum machine learning
At the intersection of machine learning and quantum computing, quantum machine learning
has the potential of accelerating data analysis, especially for quantum data, with …
has the potential of accelerating data analysis, especially for quantum data, with …
AI for next generation computing: Emerging trends and future directions
Autonomic computing investigates how systems can achieve (user) specified “control”
outcomes on their own, without the intervention of a human operator. Autonomic computing …
outcomes on their own, without the intervention of a human operator. Autonomic computing …
The power of quantum neural networks
It is unknown whether near-term quantum computers are advantageous for machine
learning tasks. In this work we address this question by trying to understand how powerful …
learning tasks. In this work we address this question by trying to understand how powerful …
The randomized measurement toolbox
Programmable quantum simulators and quantum computers are opening unprecedented
opportunities for exploring and exploiting the properties of highly entangled complex …
opportunities for exploring and exploiting the properties of highly entangled complex …
Generalization in quantum machine learning from few training data
Modern quantum machine learning (QML) methods involve variationally optimizing a
parameterized quantum circuit on a training data set, and subsequently making predictions …
parameterized quantum circuit on a training data set, and subsequently making predictions …
Quantum variational algorithms are swamped with traps
One of the most important properties of classical neural networks is how surprisingly
trainable they are, though their training algorithms typically rely on optimizing complicated …
trainable they are, though their training algorithms typically rely on optimizing complicated …
Quantum computing for finance
Quantum computers are expected to surpass the computational capabilities of classical
computers and have a transformative impact on numerous industry sectors. We present a …
computers and have a transformative impact on numerous industry sectors. We present a …