A survey on deep learning for human activity recognition
Human activity recognition is a key to a lot of applications such as healthcare and smart
home. In this study, we provide a comprehensive survey on recent advances and challenges …
home. In this study, we provide a comprehensive survey on recent advances and challenges …
Deep learning for sensor-based human activity recognition: Overview, challenges, and opportunities
The vast proliferation of sensor devices and Internet of Things enables the applications of
sensor-based activity recognition. However, there exist substantial challenges that could …
sensor-based activity recognition. However, there exist substantial challenges that could …
A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets
K Bayoudh, R Knani, F Hamdaoui, A Mtibaa - The Visual Computer, 2022 - Springer
The research progress in multimodal learning has grown rapidly over the last decade in
several areas, especially in computer vision. The growing potential of multimodal data …
several areas, especially in computer vision. The growing potential of multimodal data …
Efficient acceleration of deep learning inference on resource-constrained edge devices: A review
Successful integration of deep neural networks (DNNs) or deep learning (DL) has resulted
in breakthroughs in many areas. However, deploying these highly accurate models for data …
in breakthroughs in many areas. However, deploying these highly accurate models for data …
Edge intelligence: Empowering intelligence to the edge of network
Edge intelligence refers to a set of connected systems and devices for data collection,
caching, processing, and analysis proximity to where data are captured based on artificial …
caching, processing, and analysis proximity to where data are captured based on artificial …
Deep learning in mobile and wireless networking: A survey
The rapid uptake of mobile devices and the rising popularity of mobile applications and
services pose unprecedented demands on mobile and wireless networking infrastructure …
services pose unprecedented demands on mobile and wireless networking infrastructure …
A semisupervised recurrent convolutional attention model for human activity recognition
Recent years have witnessed the success of deep learning methods in human activity
recognition (HAR). The longstanding shortage of labeled activity data inherently calls for a …
recognition (HAR). The longstanding shortage of labeled activity data inherently calls for a …
Multi-task self-supervised learning for human activity detection
Deep learning methods are successfully used in applications pertaining to ubiquitous
computing, pervasive intelligence, health, and well-being. Specifically, the area of human …
computing, pervasive intelligence, health, and well-being. Specifically, the area of human …
[PDF][PDF] AttnSense: Multi-level attention mechanism for multimodal human activity recognition.
Sensor-based human activity recognition is a fundamental research problem in ubiquitous
computing, which uses the rich sensing data from multimodal embedded sensors such as …
computing, which uses the rich sensing data from multimodal embedded sensors such as …
Selfhar: Improving human activity recognition through self-training with unlabeled data
Machine learning and deep learning have shown great promise in mobile sensing
applications, including Human Activity Recognition. However, the performance of such …
applications, including Human Activity Recognition. However, the performance of such …