Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Hard sample aware network for contrastive deep graph clustering
Contrastive deep graph clustering, which aims to divide nodes into disjoint groups via
contrastive mechanisms, is a challenging research spot. Among the recent works, hard …
contrastive mechanisms, is a challenging research spot. Among the recent works, hard …
Cluster-guided contrastive graph clustering network
Benefiting from the intrinsic supervision information exploitation capability, contrastive
learning has achieved promising performance in the field of deep graph clustering recently …
learning has achieved promising performance in the field of deep graph clustering recently …
Graph anomaly detection via multi-scale contrastive learning networks with augmented view
Graph anomaly detection (GAD) is a vital task in graph-based machine learning and has
been widely applied in many real-world applications. The primary goal of GAD is to capture …
been widely applied in many real-world applications. The primary goal of GAD is to capture …
Dealmvc: Dual contrastive calibration for multi-view clustering
Benefiting from the strong view-consistent information mining capacity, multi-view
contrastive clustering has attracted plenty of attention in recent years. However, we observe …
contrastive clustering has attracted plenty of attention in recent years. However, we observe …
A survey of deep graph clustering: Taxonomy, challenge, application, and open resource
Graph clustering, which aims to divide nodes in the graph into several distinct clusters, is a
fundamental yet challenging task. Benefiting from the powerful representation capability of …
fundamental yet challenging task. Benefiting from the powerful representation capability of …
Convert: Contrastive graph clustering with reliable augmentation
Contrastive graph node clustering via learnable data augmentation is a hot research spot in
the field of unsupervised graph learning. The existing methods learn the sampling …
the field of unsupervised graph learning. The existing methods learn the sampling …
Fast continual multi-view clustering with incomplete views
Multi-view clustering (MVC) has attracted broad attention due to its capacity to exploit
consistent and complementary information across views. This paper focuses on a …
consistent and complementary information across views. This paper focuses on a …
Reinforcement graph clustering with unknown cluster number
Deep graph clustering, which aims to group nodes into disjoint clusters by neural networks
in an unsupervised manner, has attracted great attention in recent years. Although the …
in an unsupervised manner, has attracted great attention in recent years. Although the …
Tmac: Temporal multi-modal graph learning for acoustic event classification
Audiovisual data is everywhere in this digital age, which raises higher requirements for the
deep learning models developed on them. To well handle the information of the multi-modal …
deep learning models developed on them. To well handle the information of the multi-modal …
Efficient multi-view graph clustering with local and global structure preservation
Anchor-based multi-view graph clustering (AMVGC) has received abundant attention owing
to its high efficiency and the capability to capture complementary structural information …
to its high efficiency and the capability to capture complementary structural information …