Deep clustering: A comprehensive survey
Cluster analysis plays an indispensable role in machine learning and data mining. Learning
a good data representation is crucial for clustering algorithms. Recently, deep clustering …
a good data representation is crucial for clustering algorithms. Recently, deep clustering …
Deep multi-view learning methods: A review
Multi-view learning (MVL) has attracted increasing attention and achieved great practical
success by exploiting complementary information of multiple features or modalities …
success by exploiting complementary information of multiple features or modalities …
LRR-Net: An interpretable deep unfolding network for hyperspectral anomaly detection
Considerable endeavors have been expended toward enhancing the representation
performance for hyperspectral anomaly detection (HAD) through physical model-based …
performance for hyperspectral anomaly detection (HAD) through physical model-based …
Finding global homophily in graph neural networks when meeting heterophily
We investigate graph neural networks on graphs with heterophily. Some existing methods
amplify a node's neighborhood with multi-hop neighbors to include more nodes with …
amplify a node's neighborhood with multi-hop neighbors to include more nodes with …
RFN-Nest: An end-to-end residual fusion network for infrared and visible images
In the image fusion field, the design of deep learning-based fusion methods is far from
routine. It is invariably fusion-task specific and requires a careful consideration. The most …
routine. It is invariably fusion-task specific and requires a careful consideration. The most …
Lrrnet: A novel representation learning guided fusion network for infrared and visible images
Deep learning based fusion methods have been achieving promising performance in image
fusion tasks. This is attributed to the network architecture that plays a very important role in …
fusion tasks. This is attributed to the network architecture that plays a very important role in …
Hyperspectral anomaly detection: A survey
Hyperspectral imagery can obtain hundreds of narrow spectral bands of ground objects. The
abundant and detailed spectral information offers a unique diagnostic identification ability for …
abundant and detailed spectral information offers a unique diagnostic identification ability for …
Efficient deep embedded subspace clustering
Recently deep learning methods have shown significant progress in data clustering tasks.
Deep clustering methods (including distance-based methods and subspace-based …
Deep clustering methods (including distance-based methods and subspace-based …
Consensus graph learning for multi-view clustering
Multi-view clustering, which exploits the multi-view information to partition data into their
clusters, has attracted intense attention. However, most existing methods directly learn a …
clusters, has attracted intense attention. However, most existing methods directly learn a …
Brief review of image denoising techniques
L Fan, F Zhang, H Fan, C Zhang - Visual Computing for Industry …, 2019 - Springer
With the explosion in the number of digital images taken every day, the demand for more
accurate and visually pleasing images is increasing. However, the images captured by …
accurate and visually pleasing images is increasing. However, the images captured by …