From anecdotal evidence to quantitative evaluation methods: A systematic review on evaluating explainable ai
The rising popularity of explainable artificial intelligence (XAI) to understand high-performing
black boxes raised the question of how to evaluate explanations of machine learning (ML) …
black boxes raised the question of how to evaluate explanations of machine learning (ML) …
A systematic review of explainable artificial intelligence in terms of different application domains and tasks
Artificial intelligence (AI) and machine learning (ML) have recently been radically improved
and are now being employed in almost every application domain to develop automated or …
and are now being employed in almost every application domain to develop automated or …
[HTML][HTML] Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence
Artificial intelligence (AI) is currently being utilized in a wide range of sophisticated
applications, but the outcomes of many AI models are challenging to comprehend and trust …
applications, but the outcomes of many AI models are challenging to comprehend and trust …
[HTML][HTML] Connecting the dots in trustworthy Artificial Intelligence: From AI principles, ethics, and key requirements to responsible AI systems and regulation
Abstract Trustworthy Artificial Intelligence (AI) is based on seven technical requirements
sustained over three main pillars that should be met throughout the system's entire life cycle …
sustained over three main pillars that should be met throughout the system's entire life cycle …
Applications of explainable artificial intelligence in diagnosis and surgery
In recent years, artificial intelligence (AI) has shown great promise in medicine. However,
explainability issues make AI applications in clinical usages difficult. Some research has …
explainability issues make AI applications in clinical usages difficult. Some research has …
[HTML][HTML] Explainable Artificial Intelligence (XAI) 2.0: A manifesto of open challenges and interdisciplinary research directions
Understanding black box models has become paramount as systems based on opaque
Artificial Intelligence (AI) continue to flourish in diverse real-world applications. In response …
Artificial Intelligence (AI) continue to flourish in diverse real-world applications. In response …
Explainable machine learning in materials science
Abstract Machine learning models are increasingly used in materials studies because of
their exceptional accuracy. However, the most accurate machine learning models are …
their exceptional accuracy. However, the most accurate machine learning models are …
Explainable artificial intelligence in cybersecurity: A survey
Nowadays, Artificial Intelligence (AI) is widely applied in every area of human being's daily
life. Despite the AI benefits, its application suffers from the opacity of complex internal …
life. Despite the AI benefits, its application suffers from the opacity of complex internal …
Automated detection and forecasting of covid-19 using deep learning techniques: A review
Abstract In March 2020, the World Health Organization (WHO) declared COVID-19 a global
epidemic, caused by the SARS-CoV-2 virus. Initially, COVID-19 was diagnosed using real …
epidemic, caused by the SARS-CoV-2 virus. Initially, COVID-19 was diagnosed using real …
Explainability of artificial intelligence methods, applications and challenges: A comprehensive survey
W Ding, M Abdel-Basset, H Hawash, AM Ali - Information Sciences, 2022 - Elsevier
The continuous advancement of Artificial Intelligence (AI) has been revolutionizing the
strategy of decision-making in different life domains. Regardless of this achievement, AI …
strategy of decision-making in different life domains. Regardless of this achievement, AI …