Adaptive neighborhood rough set model for hybrid data processing: a case study on Parkinson's disease behavioral analysis

I Raza, MH Jamal, R Qureshi, AK Shahid… - Scientific Reports, 2024 - nature.com
Extracting knowledge from hybrid data, comprising both categorical and numerical data,
poses significant challenges due to the inherent difficulty in preserving information and …

Artificial intelligence modeling for power system planning

S Knežević, M Žarković - Electrical Engineering, 2024 - Springer
The increasing complexity of modern power systems due to the integration of prosumers,
renewable energy sources, and energy storage, has significantly complicated system …

[HTML][HTML] Beekee** suitability prediction based on an adaptive neuro-fuzzy inference system and apiary level data

GAF Kamga, Y Bouroubi, M Germain, G Martin… - Ecological …, 2025 - Elsevier
The study employs a predictive modelling approach using a fuzzy inference system to
assess the beekee** potential of a geographic area. Specifically, an adaptive neuro-fuzzy …

Homogenous Ensembles of Neuro-Fuzzy Classifiers using Hyperparameter Tuning for Medical Data

H Ouifak, Z Afkhkhar, ATI Manzi, A Idri - International Journal of …, 2024 - World Scientific
Neuro-fuzzy techniques have been widely used in many applications due to their ability to
generate interpretable fuzzy rules. Ensemble learning, on the other hand, is an emerging …

Type-2 Mamdani Fuzzy System Optimization for a Classification Ensemble with Black Widow Optimizer

S Varela-Santos, P Melin - New Horizons for Fuzzy Logic, Neural Networks …, 2024 - Springer
Ensemble models perform classification on data using multiple models combined and
unified to a single output. An important part of the ensemble is the combination or …

JOURNAL OF APPLIED ECONOMIC RESEARCH

РА ЖУКОВ, СВ ПРОКОПЧИНА… - JOURNAL OF APPLIED …, 2024 - elibrary.ru
Экономика субъектов Российской Федерации, представляющих собой социо-эколого-
экономические системы, характеризуется быстро меняющимися условиями …

Fuzzy Granular Computing for Evaluating Average Uncertainty in Machine Learning Models

N Sadeghi, N Gerami Seresht, W Pedrycz… - Available at SSRN … - papers.ssrn.com
Realistic evaluation of uncertainty is crucial for informed decision-making in machine
learning (ML) models. Our study introduces a pioneering approach to quantify uncertainty in …

Beekee** Suitability Prediction Based on an Adaptive Neuro‐Fuzzy Inference System and Apiary Level Data

GAK Fotso, Y Bouroubi, M Germain, G Martin… - Available at SSRN … - papers.ssrn.com
The study employs a predictive modelling approach using a fuzzy inference system to
assess the beekee** potential of a geographic area. Specifically, an adaptive neuro-fuzzy …

[PDF][PDF] Insights into the Potential of Fuzzy Systems for Medical AI Interpretability

H Ouifak, A Idri - scitepress.org
Machine Learning (ML) solutions have demonstrated significant improvements across
various domains. However, the complete integration of ML solutions into critical fields such …

[PDF][PDF] Моделирование функциональных связей региональных экономических систем по малым выборкам на основе байесовских интеллектуальных …

РА Жуков, СВ Прокопчина, МА Плинская… - Journal of Applied …, 2024 - journalaer.ru
Экономика субъектов Российской Федерации, представляющих собой социо-эколого-
экономические системы, характеризуется быстро меняющимися условиями …