Explainable artificial intelligence for autonomous driving: A comprehensive overview and field guide for future research directions

S Atakishiyev, M Salameh, H Yao, R Goebel - IEEE Access, 2024 - ieeexplore.ieee.org
Autonomous driving has achieved significant milestones in research and development over
the last two decades. There is increasing interest in the field as the deployment of …

Securing connected & autonomous vehicles: Challenges posed by adversarial machine learning and the way forward

A Qayyum, M Usama, J Qadir… - … Surveys & Tutorials, 2020 - ieeexplore.ieee.org
Connected and autonomous vehicles (CAVs) will form the backbone of future next-
generation intelligent transportation systems (ITS) providing travel comfort, road safety …

Decision making of autonomous vehicles in lane change scenarios: Deep reinforcement learning approaches with risk awareness

G Li, Y Yang, S Li, X Qu, N Lyu, SE Li - Transportation research part C …, 2022 - Elsevier
Driving safety is the most important element that needs to be considered for autonomous
vehicles (AVs). To ensure driving safety, we proposed a lane change decision-making …

Survey of deep reinforcement learning for motion planning of autonomous vehicles

S Aradi - IEEE Transactions on Intelligent Transportation …, 2020 - ieeexplore.ieee.org
Academic research in the field of autonomous vehicles has reached high popularity in
recent years related to several topics as sensor technologies, V2X communications, safety …

A survey on autonomous vehicle control in the era of mixed-autonomy: From physics-based to AI-guided driving policy learning

X Di, R Shi - Transportation research part C: emerging technologies, 2021 - Elsevier
This paper serves as an introduction and overview of the potentially useful models and
methodologies from artificial intelligence (AI) into the field of transportation engineering for …

A survey of deep RL and IL for autonomous driving policy learning

Z Zhu, H Zhao - IEEE Transactions on Intelligent Transportation …, 2021 - ieeexplore.ieee.org
Autonomous driving (AD) agents generate driving policies based on online perception
results, which are obtained at multiple levels of abstraction, eg, behavior planning, motion …

Lane change strategies for autonomous vehicles: A deep reinforcement learning approach based on transformer

G Li, Y Qiu, Y Yang, Z Li, S Li, W Chu… - IEEE Transactions …, 2022 - ieeexplore.ieee.org
End-to-end approaches are one of the most promising solutions for autonomous vehicles
(AVs) decision-making. However, the deployment of these technologies is usually …

Uncertainties in onboard algorithms for autonomous vehicles: Challenges, mitigation, and perspectives

K Yang, X Tang, J Li, H Wang, G Zhong… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
Autonomous driving is considered one of the revolutionary technologies sha** humanity's
future mobility and quality of life. However, safety remains a critical hurdle in the way of …

Safe reinforcement learning using probabilistic shields

N Jansen, B Könighofer, S Junges… - 31st International …, 2020 - drops.dagstuhl.de
This paper concerns the efficient construction of a safety shield for reinforcement learning.
We specifically target scenarios that incorporate uncertainty and use Markov decision …

A survey of deep reinforcement learning algorithms for motion planning and control of autonomous vehicles

F Ye, S Zhang, P Wang, CY Chan - 2021 IEEE Intelligent …, 2021 - ieeexplore.ieee.org
In this survey, we systematically summarize the current literature on studies that apply
reinforcement learning (RL) to the motion planning and control of autonomous vehicles …