Review of progress in calculation and simulation of high-temperature oxidation

D Gao, Z Shen, K Chen, X Zhou, H Liu, J Wang… - Progress in Materials …, 2024 - Elsevier
High-temperature oxidation can precipitate chemical and mechanical degradations in
materials, potentially leading to catastrophic failures. Thus, understanding the mechanisms …

Scientific machine learning through physics–informed neural networks: Where we are and what's next

S Cuomo, VS Di Cola, F Giampaolo, G Rozza… - Journal of Scientific …, 2022 - Springer
Abstract Physics-Informed Neural Networks (PINN) are neural networks (NNs) that encode
model equations, like Partial Differential Equations (PDE), as a component of the neural …

A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications

L Alzubaidi, J Bai, A Al-Sabaawi, J Santamaría… - Journal of Big Data, 2023 - Springer
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a
large amount of data to achieve exceptional performance. Unfortunately, many applications …

An expert's guide to training physics-informed neural networks

S Wang, S Sankaran, H Wang, P Perdikaris - arxiv preprint arxiv …, 2023 - arxiv.org
Physics-informed neural networks (PINNs) have been popularized as a deep learning
framework that can seamlessly synthesize observational data and partial differential …

A review on physics-informed data-driven remaining useful life prediction: Challenges and opportunities

H Li, Z Zhang, T Li, X Si - Mechanical Systems and Signal Processing, 2024 - Elsevier
Remaining useful life (RUL) prediction, known as 'prognostics', has long been recognized as
one of the key technologies in prognostics and health management (PHM) to maintain the …

Physics-informed machine learning: A survey on problems, methods and applications

Z Hao, S Liu, Y Zhang, C Ying, Y Feng, H Su… - arxiv preprint arxiv …, 2022 - arxiv.org
Recent advances of data-driven machine learning have revolutionized fields like computer
vision, reinforcement learning, and many scientific and engineering domains. In many real …

Physics-informed machine learning

GE Karniadakis, IG Kevrekidis, L Lu… - Nature Reviews …, 2021 - nature.com
Despite great progress in simulating multiphysics problems using the numerical
discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate …

Physics-informed neural networks (PINNs) for fluid mechanics: A review

S Cai, Z Mao, Z Wang, M Yin, GE Karniadakis - Acta Mechanica Sinica, 2021 - Springer
Despite the significant progress over the last 50 years in simulating flow problems using
numerical discretization of the Navier–Stokes equations (NSE), we still cannot incorporate …

Learning the solution operator of parametric partial differential equations with physics-informed DeepONets

S Wang, H Wang, P Perdikaris - Science advances, 2021 - science.org
Partial differential equations (PDEs) play a central role in the mathematical analysis and
modeling of complex dynamic processes across all corners of science and engineering …

A physics-informed variational DeepONet for predicting crack path in quasi-brittle materials

S Goswami, M Yin, Y Yu, GE Karniadakis - Computer Methods in Applied …, 2022 - Elsevier
Failure trajectories, probable failure zones, and damage indices are some of the key
quantities of relevance in brittle fracture mechanics. High-fidelity numerical solvers that …