Hyperspectral unmixing based on nonnegative matrix factorization: A comprehensive review

XR Feng, HC Li, R Wang, Q Du, X Jia… - IEEE Journal of …, 2022 - ieeexplore.ieee.org
Hyperspectral unmixing has been an important technique that estimates a set of
endmembers and their corresponding abundances from a hyperspectral image (HSI) …

Tensor decompositions for hyperspectral data processing in remote sensing: A comprehensive review

M Wang, D Hong, Z Han, J Li, J Yao… - … and Remote Sensing …, 2023 - ieeexplore.ieee.org
Owing to the rapid development of sensor technology, hyperspectral (HS) remote sensing
(RS) imaging has provided a significant amount of spatial and spectral information for the …

SpectralFormer: Rethinking hyperspectral image classification with transformers

D Hong, Z Han, J Yao, L Gao, B Zhang… - … on Geoscience and …, 2021 - ieeexplore.ieee.org
Hyperspectral (HS) images are characterized by approximately contiguous spectral
information, enabling the fine identification of materials by capturing subtle spectral …

More diverse means better: Multimodal deep learning meets remote-sensing imagery classification

D Hong, L Gao, N Yokoya, J Yao… - … on Geoscience and …, 2020 - ieeexplore.ieee.org
Classification and identification of the materials lying over or beneath the earth's surface
have long been a fundamental but challenging research topic in geoscience and remote …

[HTML][HTML] Multimodal remote sensing benchmark datasets for land cover classification with a shared and specific feature learning model

D Hong, J Hu, J Yao, J Chanussot, XX Zhu - ISPRS Journal of …, 2021 - Elsevier
As remote sensing (RS) data obtained from different sensors become available largely and
openly, multimodal data processing and analysis techniques have been garnering …

Interpretable hyperspectral artificial intelligence: When nonconvex modeling meets hyperspectral remote sensing

D Hong, W He, N Yokoya, J Yao, L Gao… - … and Remote Sensing …, 2021 - ieeexplore.ieee.org
Hyperspectral (HS) imaging, also known as image spectrometry, is a landmark technique in
geoscience and remote sensing (RS). In the past decade, enormous efforts have been made …

Hyperspectral image classification with convolutional neural network and active learning

X Cao, J Yao, Z Xu, D Meng - IEEE Transactions on Geoscience …, 2020 - ieeexplore.ieee.org
Deep neural network has been extensively applied to hyperspectral image (HSI)
classification recently. However, its success is greatly attributed to numerous labeled …

[HTML][HTML] X-ModalNet: A semi-supervised deep cross-modal network for classification of remote sensing data

D Hong, N Yokoya, GS **a, J Chanussot… - ISPRS Journal of …, 2020 - Elsevier
This paper addresses the problem of semi-supervised transfer learning with limited cross-
modality data in remote sensing. A large amount of multi-modal earth observation images …

Semi-active convolutional neural networks for hyperspectral image classification

J Yao, X Cao, D Hong, X Wu, D Meng… - … on Geoscience and …, 2022 - ieeexplore.ieee.org
Owing to the powerful data representation ability of deep learning (DL) techniques,
tremendous progress has been recently made in hyperspectral image (HSI) classification …

Deep spatial-spectral global reasoning network for hyperspectral image denoising

X Cao, X Fu, C Xu, D Meng - IEEE Transactions on Geoscience …, 2021 - ieeexplore.ieee.org
Although deep neural networks (DNNs) have been widely applied to hyperspectral image
(HSI) denoising, most DNN-based HSI denoising methods are designed by stacking …