[HTML][HTML] Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction

D Markovics, MJ Mayer - Renewable and Sustainable Energy Reviews, 2022 - Elsevier
The increase of the worldwide installed photovoltaic (PV) capacity and the intermittent
nature of the solar resource highlights the importance of power forecasting for the grid …

Machine learning in python: Main developments and technology trends in data science, machine learning, and artificial intelligence

S Raschka, J Patterson, C Nolet - Information, 2020 - mdpi.com
Smarter applications are making better use of the insights gleaned from data, having an
impact on every industry and research discipline. At the core of this revolution lies the tools …

Why do tree-based models still outperform deep learning on typical tabular data?

L Grinsztajn, E Oyallon… - Advances in neural …, 2022 - proceedings.neurips.cc
While deep learning has enabled tremendous progress on text and image datasets, its
superiority on tabular data is not clear. We contribute extensive benchmarks of standard and …

Deep neural networks and tabular data: A survey

V Borisov, T Leemann, K Seßler, J Haug… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Heterogeneous tabular data are the most commonly used form of data and are essential for
numerous critical and computationally demanding applications. On homogeneous datasets …

When do neural nets outperform boosted trees on tabular data?

D McElfresh, S Khandagale… - Advances in …, 2024 - proceedings.neurips.cc
Tabular data is one of the most commonly used types of data in machine learning. Despite
recent advances in neural nets (NNs) for tabular data, there is still an active discussion on …

[PDF][PDF] H2o automl: Scalable automatic machine learning

E LeDell, S Poirier - Proceedings of the AutoML Workshop at ICML, 2020 - automl.org
H2O is an open source, distributed machine learning platform designed to scale to very
large datasets, with APIs in R, Python, Java and Scala. We present H2O AutoML, a highly …

Auto-sklearn 2.0: Hands-free automl via meta-learning

M Feurer, K Eggensperger, S Falkner… - Journal of Machine …, 2022 - jmlr.org
Automated Machine Learning (AutoML) supports practitioners and researchers with the
tedious task of designing machine learning pipelines and has recently achieved substantial …

Review of ML and AutoML solutions to forecast time-series data

A Alsharef, K Aggarwal, Sonia, M Kumar… - … Methods in Engineering, 2022 - Springer
Time-series forecasting is a significant discipline of data modeling where past observations
of the same variable are analyzed to predict the future values of the time series. Its …

Well-tuned simple nets excel on tabular datasets

A Kadra, M Lindauer, F Hutter… - Advances in neural …, 2021 - proceedings.neurips.cc
Tabular datasets are the last" unconquered castle" for deep learning, with traditional ML
methods like Gradient-Boosted Decision Trees still performing strongly even against recent …

Automl to date and beyond: Challenges and opportunities

SK Karmaker, MM Hassan, MJ Smith, L Xu… - ACM Computing …, 2021 - dl.acm.org
As big data becomes ubiquitous across domains, and more and more stakeholders aspire to
make the most of their data, demand for machine learning tools has spurred researchers to …