Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Machine learning and the physical sciences
Machine learning (ML) encompasses a broad range of algorithms and modeling tools used
for a vast array of data processing tasks, which has entered most scientific disciplines in …
for a vast array of data processing tasks, which has entered most scientific disciplines in …
From DFT to machine learning: recent approaches to materials science–a review
Recent advances in experimental and computational methods are increasing the quantity
and complexity of generated data. This massive amount of raw data needs to be stored and …
and complexity of generated data. This massive amount of raw data needs to be stored and …
Transfer learning in hybrid classical-quantum neural networks
We extend the concept of transfer learning, widely applied in modern machine learning
algorithms, to the emerging context of hybrid neural networks composed of classical and …
algorithms, to the emerging context of hybrid neural networks composed of classical and …
Machine learning for quantum matter
J Carrasquilla - Advances in Physics: X, 2020 - Taylor & Francis
Quantum matter, the research field studying phases of matter whose properties are
intrinsically quantum mechanical, draws from areas as diverse as hard condensed matter …
intrinsically quantum mechanical, draws from areas as diverse as hard condensed matter …
Identifying topological order through unsupervised machine learning
JF Rodriguez-Nieva, MS Scheurer - Nature Physics, 2019 - nature.com
The Landau description of phase transitions relies on the identification of a local order
parameter that indicates the onset of a symmetry-breaking phase. In contrast, topological …
parameter that indicates the onset of a symmetry-breaking phase. In contrast, topological …
Identifying quantum phase transitions using artificial neural networks on experimental data
Abstract Machine-learning techniques such as artificial neural networks are currently
revolutionizing many technological areas and have also proven successful in quantum …
revolutionizing many technological areas and have also proven successful in quantum …
Modern applications of machine learning in quantum sciences
In this book, we provide a comprehensive introduction to the most recent advances in the
application of machine learning methods in quantum sciences. We cover the use of deep …
application of machine learning methods in quantum sciences. We cover the use of deep …
Unsupervised machine learning and band topology
MS Scheurer, RJ Slager - Physical review letters, 2020 - APS
The study of topological band structures is an active area of research in condensed matter
physics and beyond. Here, we combine recent progress in this field with developments in …
physics and beyond. Here, we combine recent progress in this field with developments in …
How to use neural networks to investigate quantum many-body physics
J Carrasquilla, G Torlai - PRX Quantum, 2021 - APS
Over the past few years, machine learning has emerged as a powerful computational tool to
tackle complex problems in a broad range of scientific disciplines. In particular, artificial …
tackle complex problems in a broad range of scientific disciplines. In particular, artificial …
Machine learning for condensed matter physics
E Bedolla, LC Padierna… - Journal of Physics …, 2020 - iopscience.iop.org
Condensed matter physics (CMP) seeks to understand the microscopic interactions of matter
at the quantum and atomistic levels, and describes how these interactions result in both …
at the quantum and atomistic levels, and describes how these interactions result in both …