Federated learning for smart healthcare: A survey
Recent advances in communication technologies and the Internet-of-Medical-Things (IOMT)
have transformed smart healthcare enabled by artificial intelligence (AI). Traditionally, AI …
have transformed smart healthcare enabled by artificial intelligence (AI). Traditionally, AI …
Distributed learning in wireless networks: Recent progress and future challenges
The next-generation of wireless networks will enable many machine learning (ML) tools and
applications to efficiently analyze various types of data collected by edge devices for …
applications to efficiently analyze various types of data collected by edge devices for …
Edge learning for B5G networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing
To process and transfer large amounts of data in emerging wireless services, it has become
increasingly appealing to exploit distributed data communication and learning. Specifically …
increasingly appealing to exploit distributed data communication and learning. Specifically …
Edge artificial intelligence for 6G: Vision, enabling technologies, and applications
The thriving of artificial intelligence (AI) applications is driving the further evolution of
wireless networks. It has been envisioned that 6G will be transformative and will …
wireless networks. It has been envisioned that 6G will be transformative and will …
Beyond transmitting bits: Context, semantics, and task-oriented communications
Communication systems to date primarily aim at reliably communicating bit sequences.
Such an approach provides efficient engineering designs that are agnostic to the meanings …
Such an approach provides efficient engineering designs that are agnostic to the meanings …
[HTML][HTML] Federated learning for 6G: Applications, challenges, and opportunities
Standard machine-learning approaches involve the centralization of training data in a data
center, where centralized machine-learning algorithms can be applied for data analysis and …
center, where centralized machine-learning algorithms can be applied for data analysis and …
Client selection and bandwidth allocation in wireless federated learning networks: A long-term perspective
This paper studies federated learning (FL) in a classic wireless network, where learning
clients share a common wireless link to a coordinating server to perform federated model …
clients share a common wireless link to a coordinating server to perform federated model …
Communication-efficient edge AI: Algorithms and systems
Artificial intelligence (AI) has achieved remarkable breakthroughs in a wide range of fields,
ranging from speech processing, image classification to drug discovery. This is driven by the …
ranging from speech processing, image classification to drug discovery. This is driven by the …
Reconfigurable-intelligent-surface empowered wireless communications: Challenges and opportunities
Reconfigurable intelligent surfaces (RISs) are regarded as a promising emerging hardware
technology to improve the spectrum and energy efficiency of wireless networks by artificially …
technology to improve the spectrum and energy efficiency of wireless networks by artificially …
A survey on over-the-air computation
Communication and computation are often viewed as separate tasks. This approach is very
effective from the perspective of engineering as isolated optimizations can be performed …
effective from the perspective of engineering as isolated optimizations can be performed …