[HTML][HTML] Explainable artificial intelligence (XAI) in deep learning-based medical image analysis
With an increase in deep learning-based methods, the call for explainability of such methods
grows, especially in high-stakes decision making areas such as medical image analysis …
grows, especially in high-stakes decision making areas such as medical image analysis …
Deep learning-enabled medical computer vision
A decade of unprecedented progress in artificial intelligence (AI) has demonstrated the
potential for many fields—including medicine—to benefit from the insights that AI techniques …
potential for many fields—including medicine—to benefit from the insights that AI techniques …
Dtfd-mil: Double-tier feature distillation multiple instance learning for histopathology whole slide image classification
Multiple instance learning (MIL) has been increasingly used in the classification of
histopathology whole slide images (WSIs). However, MIL approaches for this specific …
histopathology whole slide images (WSIs). However, MIL approaches for this specific …
Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning
We address the challenging problem of whole slide image (WSI) classification. WSIs have
very high resolutions and usually lack localized annotations. WSI classification can be cast …
very high resolutions and usually lack localized annotations. WSI classification can be cast …
Hopfield networks is all you need
We introduce a modern Hopfield network with continuous states and a corresponding
update rule. The new Hopfield network can store exponentially (with the dimension of the …
update rule. The new Hopfield network can store exponentially (with the dimension of the …
Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
The development of decision support systems for pathology and their deployment in clinical
practice have been hindered by the need for large manually annotated datasets. To …
practice have been hindered by the need for large manually annotated datasets. To …
Deep neural network models for computational histopathology: A survey
Histopathological images contain rich phenotypic information that can be used to monitor
underlying mechanisms contributing to disease progression and patient survival outcomes …
underlying mechanisms contributing to disease progression and patient survival outcomes …
Object detection in 20 years: A survey
Object detection, as of one the most fundamental and challenging problems in computer
vision, has received great attention in recent years. Over the past two decades, we have …
vision, has received great attention in recent years. Over the past two decades, we have …
Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology
Artificial intelligence (AI) can extract visual information from histopathological slides and
yield biological insight and clinical biomarkers. Whole slide images are cut into thousands of …
yield biological insight and clinical biomarkers. Whole slide images are cut into thousands of …
Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients
Histopathologic assessment is indispensable for diagnosing colorectal cancer (CRC).
However, manual evaluation of the diseased tissues under the microscope cannot reliably …
However, manual evaluation of the diseased tissues under the microscope cannot reliably …