Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Self-supervised learning for recommender systems: A survey
In recent years, neural architecture-based recommender systems have achieved
tremendous success, but they still fall short of expectation when dealing with highly sparse …
tremendous success, but they still fall short of expectation when dealing with highly sparse …
Self-supervised learning of graph neural networks: A unified review
Deep models trained in supervised mode have achieved remarkable success on a variety of
tasks. When labeled samples are limited, self-supervised learning (SSL) is emerging as a …
tasks. When labeled samples are limited, self-supervised learning (SSL) is emerging as a …
Contrast with reconstruct: Contrastive 3d representation learning guided by generative pretraining
Mainstream 3D representation learning approaches are built upon contrastive or generative
modeling pretext tasks, where great improvements in performance on various downstream …
modeling pretext tasks, where great improvements in performance on various downstream …
Infogcn: Representation learning for human skeleton-based action recognition
Human skeleton-based action recognition offers a valuable means to understand the
intricacies of human behavior because it can handle the complex relationships between …
intricacies of human behavior because it can handle the complex relationships between …
Graph neural networks: foundation, frontiers and applications
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …
recent years. Graph neural networks, also known as deep learning on graphs, graph …
Vision-language pre-training with triple contrastive learning
Vision-language representation learning largely benefits from image-text alignment through
contrastive losses (eg, InfoNCE loss). The success of this alignment strategy is attributed to …
contrastive losses (eg, InfoNCE loss). The success of this alignment strategy is attributed to …
Joint distribution matters: Deep brownian distance covariance for few-shot classification
Few-shot classification is a challenging problem as only very few training examples are
given for each new task. One of the effective research lines to address this challenge …
given for each new task. One of the effective research lines to address this challenge …
Pre-training molecular graph representation with 3d geometry
Molecular graph representation learning is a fundamental problem in modern drug and
material discovery. Molecular graphs are typically modeled by their 2D topological …
material discovery. Molecular graphs are typically modeled by their 2D topological …
Improving multimodal fusion with hierarchical mutual information maximization for multimodal sentiment analysis
In multimodal sentiment analysis (MSA), the performance of a model highly depends on the
quality of synthesized embeddings. These embeddings are generated from the upstream …
quality of synthesized embeddings. These embeddings are generated from the upstream …
3d infomax improves gnns for molecular property prediction
Molecular property prediction is one of the fastest-growing applications of deep learning with
critical real-world impacts. Although the 3D molecular graph structure is necessary for …
critical real-world impacts. Although the 3D molecular graph structure is necessary for …