Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Big data: From beginning to future
Big data is a potential research area receiving considerable attention from academia and IT
communities. In the digital world, the amounts of data generated and stored have expanded …
communities. In the digital world, the amounts of data generated and stored have expanded …
Artificial neural networks for educational data mining in higher education: A systematic literature review
E Okewu, P Adewole, S Misra… - Applied Artificial …, 2021 - Taylor & Francis
Efforts to raise the bar of higher education so as to respond to dynamic societal/industry
needs have led to a number of initiatives, including artificial neural network (ANN) based …
needs have led to a number of initiatives, including artificial neural network (ANN) based …
Tensor methods in computer vision and deep learning
Tensors, or multidimensional arrays, are data structures that can naturally represent visual
data of multiple dimensions. Inherently able to efficiently capture structured, latent semantic …
data of multiple dimensions. Inherently able to efficiently capture structured, latent semantic …
Tensor decomposition for signal processing and machine learning
Tensors or multiway arrays are functions of three or more indices (i, j, k,...)-similar to matrices
(two-way arrays), which are functions of two indices (r, c) for (row, column). Tensors have a …
(two-way arrays), which are functions of two indices (r, c) for (row, column). Tensors have a …
Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor decompositions
Modern applications in engineering and data science are increasingly based on
multidimensional data of exceedingly high volume, variety, and structural richness …
multidimensional data of exceedingly high volume, variety, and structural richness …
Tensorly: Tensor learning in python
Tensors are higher-order extensions of matrices. While matrix methods form the cornerstone
of traditional machine learning and data analysis, tensor methods have been gaining …
of traditional machine learning and data analysis, tensor methods have been gaining …
Tensor decompositions for signal processing applications: From two-way to multiway component analysis
The widespread use of multisensor technology and the emergence of big data sets have
highlighted the limitations of standard flat-view matrix models and the necessity to move …
highlighted the limitations of standard flat-view matrix models and the necessity to move …
Tensors for data mining and data fusion: Models, applications, and scalable algorithms
Tensors and tensor decompositions are very powerful and versatile tools that can model a
wide variety of heterogeneous, multiaspect data. As a result, tensor decompositions, which …
wide variety of heterogeneous, multiaspect data. As a result, tensor decompositions, which …
Review and big data perspectives on robust data mining approaches for industrial process modeling with outliers and missing data
Industrial process data are usually mixed with missing data and outliers which can greatly
affect the statistical explanation abilities for traditional data-driven modeling methods. In this …
affect the statistical explanation abilities for traditional data-driven modeling methods. In this …
Tensor completion algorithms in big data analytics
Tensor completion is a problem of filling the missing or unobserved entries of partially
observed tensors. Due to the multidimensional character of tensors in describing complex …
observed tensors. Due to the multidimensional character of tensors in describing complex …