Complex-valued neural networks: A comprehensive survey
Complex-valued neural networks (CVNNs) have shown their excellent efficiency compared
to their real counter-parts in speech enhancement, image and signal processing …
to their real counter-parts in speech enhancement, image and signal processing …
AI-based reconstruction for fast MRI—A systematic review and meta-analysis
Compressed sensing (CS) has been playing a key role in accelerating the magnetic
resonance imaging (MRI) acquisition process. With the resurgence of artificial intelligence …
resonance imaging (MRI) acquisition process. With the resurgence of artificial intelligence …
Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing
Deep neural networks provide unprecedented performance gains in many real-world
problems in signal and image processing. Despite these gains, the future development and …
problems in signal and image processing. Despite these gains, the future development and …
Deep learning techniques for inverse problems in imaging
Recent work in machine learning shows that deep neural networks can be used to solve a
wide variety of inverse problems arising in computational imaging. We explore the central …
wide variety of inverse problems arising in computational imaging. We explore the central …
Differentiable convex optimization layers
Recent work has shown how to embed differentiable optimization problems (that is,
problems whose solutions can be backpropagated through) as layers within deep learning …
problems whose solutions can be backpropagated through) as layers within deep learning …
Learning to optimize: A primer and a benchmark
Learning to optimize (L2O) is an emerging approach that leverages machine learning to
develop optimization methods, aiming at reducing the laborious iterations of hand …
develop optimization methods, aiming at reducing the laborious iterations of hand …
Interpretable hyperspectral artificial intelligence: When nonconvex modeling meets hyperspectral remote sensing
Hyperspectral (HS) imaging, also known as image spectrometry, is a landmark technique in
geoscience and remote sensing (RS). In the past decade, enormous efforts have been made …
geoscience and remote sensing (RS). In the past decade, enormous efforts have been made …
MoDL: Model-based deep learning architecture for inverse problems
We introduce a model-based image reconstruction framework with a convolution neural
network (CNN)-based regularization prior. The proposed formulation provides a systematic …
network (CNN)-based regularization prior. The proposed formulation provides a systematic …
End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging
In typical cameras the optical system is designed first; once it is fixed, the parameters in the
image processing algorithm are tuned to get good image reproduction. In contrast to this …
image processing algorithm are tuned to get good image reproduction. In contrast to this …
Anomalynet: An anomaly detection network for video surveillance
Sparse coding-based anomaly detection has shown promising performance, of which the
keys are feature learning, sparse representation, and dictionary learning. In this paper, we …
keys are feature learning, sparse representation, and dictionary learning. In this paper, we …