Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Machine learning methods for small data challenges in molecular science
Small data are often used in scientific and engineering research due to the presence of
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …
Diffusion models: A comprehensive survey of methods and applications
Diffusion models have emerged as a powerful new family of deep generative models with
record-breaking performance in many applications, including image synthesis, video …
record-breaking performance in many applications, including image synthesis, video …
A review of graph neural networks: concepts, architectures, techniques, challenges, datasets, applications, and future directions
Deep learning has seen significant growth recently and is now applied to a wide range of
conventional use cases, including graphs. Graph data provides relational information …
conventional use cases, including graphs. Graph data provides relational information …
Temporal graph benchmark for machine learning on temporal graphs
Abstract We present the Temporal Graph Benchmark (TGB), a collection of challenging and
diverse benchmark datasets for realistic, reproducible, and robust evaluation of machine …
diverse benchmark datasets for realistic, reproducible, and robust evaluation of machine …
Representation learning with large language models for recommendation
Recommender systems have seen significant advancements with the influence of deep
learning and graph neural networks, particularly in capturing complex user-item …
learning and graph neural networks, particularly in capturing complex user-item …
Heterogeneous graph contrastive learning for recommendation
Graph Neural Networks (GNNs) have become powerful tools in modeling graph-structured
data in recommender systems. However, real-life recommendation scenarios usually involve …
data in recommender systems. However, real-life recommendation scenarios usually involve …
Improving graph collaborative filtering with neighborhood-enriched contrastive learning
Recently, graph collaborative filtering methods have been proposed as an effective
recommendation approach, which can capture users' preference over items by modeling the …
recommendation approach, which can capture users' preference over items by modeling the …
XSimGCL: Towards extremely simple graph contrastive learning for recommendation
Contrastive learning (CL) has recently been demonstrated critical in improving
recommendation performance. The underlying principle of CL-based recommendation …
recommendation performance. The underlying principle of CL-based recommendation …
Are graph augmentations necessary? simple graph contrastive learning for recommendation
Contrastive learning (CL) recently has spurred a fruitful line of research in the field of
recommendation, since its ability to extract self-supervised signals from the raw data is well …
recommendation, since its ability to extract self-supervised signals from the raw data is well …
Recommender systems in the era of large language models (llms)
With the prosperity of e-commerce and web applications, Recommender Systems (RecSys)
have become an indispensable and important component, providing personalized …
have become an indispensable and important component, providing personalized …