Machine learning methods for small data challenges in molecular science

B Dou, Z Zhu, E Merkurjev, L Ke, L Chen… - Chemical …, 2023 - ACS Publications
Small data are often used in scientific and engineering research due to the presence of
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …

Diffusion models: A comprehensive survey of methods and applications

L Yang, Z Zhang, Y Song, S Hong, R Xu, Y Zhao… - ACM Computing …, 2023 - dl.acm.org
Diffusion models have emerged as a powerful new family of deep generative models with
record-breaking performance in many applications, including image synthesis, video …

A review of graph neural networks: concepts, architectures, techniques, challenges, datasets, applications, and future directions

B Khemani, S Patil, K Kotecha, S Tanwar - Journal of Big Data, 2024 - Springer
Deep learning has seen significant growth recently and is now applied to a wide range of
conventional use cases, including graphs. Graph data provides relational information …

Temporal graph benchmark for machine learning on temporal graphs

S Huang, F Poursafaei, J Danovitch… - Advances in …, 2023 - proceedings.neurips.cc
Abstract We present the Temporal Graph Benchmark (TGB), a collection of challenging and
diverse benchmark datasets for realistic, reproducible, and robust evaluation of machine …

Representation learning with large language models for recommendation

X Ren, W Wei, L **a, L Su, S Cheng, J Wang… - Proceedings of the …, 2024 - dl.acm.org
Recommender systems have seen significant advancements with the influence of deep
learning and graph neural networks, particularly in capturing complex user-item …

Heterogeneous graph contrastive learning for recommendation

M Chen, C Huang, L **a, W Wei, Y Xu… - Proceedings of the …, 2023 - dl.acm.org
Graph Neural Networks (GNNs) have become powerful tools in modeling graph-structured
data in recommender systems. However, real-life recommendation scenarios usually involve …

Improving graph collaborative filtering with neighborhood-enriched contrastive learning

Z Lin, C Tian, Y Hou, WX Zhao - … of the ACM web conference 2022, 2022 - dl.acm.org
Recently, graph collaborative filtering methods have been proposed as an effective
recommendation approach, which can capture users' preference over items by modeling the …

XSimGCL: Towards extremely simple graph contrastive learning for recommendation

J Yu, X **a, T Chen, L Cui… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Contrastive learning (CL) has recently been demonstrated critical in improving
recommendation performance. The underlying principle of CL-based recommendation …

Are graph augmentations necessary? simple graph contrastive learning for recommendation

J Yu, H Yin, X **a, T Chen, L Cui… - Proceedings of the 45th …, 2022 - dl.acm.org
Contrastive learning (CL) recently has spurred a fruitful line of research in the field of
recommendation, since its ability to extract self-supervised signals from the raw data is well …

Recommender systems in the era of large language models (llms)

Z Zhao, W Fan, J Li, Y Liu, X Mei… - … on Knowledge and …, 2024 - ieeexplore.ieee.org
With the prosperity of e-commerce and web applications, Recommender Systems (RecSys)
have become an indispensable and important component, providing personalized …