A review on generative adversarial networks: Algorithms, theory, and applications
Generative adversarial networks (GANs) have recently become a hot research topic;
however, they have been studied since 2014, and a large number of algorithms have been …
however, they have been studied since 2014, and a large number of algorithms have been …
Grammatical error correction: A survey of the state of the art
Abstract Grammatical Error Correction (GEC) is the task of automatically detecting and
correcting errors in text. The task not only includes the correction of grammatical errors, such …
correcting errors in text. The task not only includes the correction of grammatical errors, such …
Palm: Scaling language modeling with pathways
Large language models have been shown to achieve remarkable performance across a
variety of natural language tasks using few-shot learning, which drastically reduces the …
variety of natural language tasks using few-shot learning, which drastically reduces the …
Finetuned language models are zero-shot learners
This paper explores a simple method for improving the zero-shot learning abilities of
language models. We show that instruction tuning--finetuning language models on a …
language models. We show that instruction tuning--finetuning language models on a …
Video pivoting unsupervised multi-modal machine translation
The main challenge in the field of unsupervised machine translation (UMT) is to associate
source-target sentences in the latent space. As people who speak different languages share …
source-target sentences in the latent space. As people who speak different languages share …
Language models are few-shot learners
We demonstrate that scaling up language models greatly improves task-agnostic, few-shot
performance, sometimes even becoming competitive with prior state-of-the-art fine-tuning …
performance, sometimes even becoming competitive with prior state-of-the-art fine-tuning …
Findings of the 2019 conference on machine translation (WMT19)
This paper presents the results of the premier shared task organized alongside the
Conference on Machine Translation (WMT) 2019. Participants were asked to build machine …
Conference on Machine Translation (WMT) 2019. Participants were asked to build machine …
Incorporating bert into neural machine translation
The recently proposed BERT has shown great power on a variety of natural language
understanding tasks, such as text classification, reading comprehension, etc. However, how …
understanding tasks, such as text classification, reading comprehension, etc. However, how …
Parallel learning: Overview and perspective for computational learning across Syn2Real and Sim2Real
Q Miao, Y Lv, M Huang, X Wang… - IEEE/CAA Journal of …, 2023 - ieeexplore.ieee.org
The virtual-to-real paradigm, ie, training models on virtual data and then applying them to
solve real-world problems, has attracted more and more attention from various domains by …
solve real-world problems, has attracted more and more attention from various domains by …
Exploring dual-task correlation for pose guided person image generation
Abstract Pose Guided Person Image Generation (PGPIG) is the task of transforming a
person image from the source pose to a given target pose. Most of the existing methods only …
person image from the source pose to a given target pose. Most of the existing methods only …