Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Domain generalization: A survey
Generalization to out-of-distribution (OOD) data is a capability natural to humans yet
challenging for machines to reproduce. This is because most learning algorithms strongly …
challenging for machines to reproduce. This is because most learning algorithms strongly …
Source-free unsupervised domain adaptation: A survey
Unsupervised domain adaptation (UDA) via deep learning has attracted appealing attention
for tackling domain-shift problems caused by distribution discrepancy across different …
for tackling domain-shift problems caused by distribution discrepancy across different …
Sharpness-aware gradient matching for domain generalization
The goal of domain generalization (DG) is to enhance the generalization capability of the
model learned from a source domain to other unseen domains. The recently developed …
model learned from a source domain to other unseen domains. The recently developed …
Towards out-of-distribution generalization: A survey
Traditional machine learning paradigms are based on the assumption that both training and
test data follow the same statistical pattern, which is mathematically referred to as …
test data follow the same statistical pattern, which is mathematically referred to as …
Generalizing to unseen domains: A survey on domain generalization
Machine learning systems generally assume that the training and testing distributions are
the same. To this end, a key requirement is to develop models that can generalize to unseen …
the same. To this end, a key requirement is to develop models that can generalize to unseen …
Test-time classifier adjustment module for model-agnostic domain generalization
This paper presents a new algorithm for domain generalization (DG),\textit {test-time
template adjuster (T3A)}, aiming to robustify a model to unknown distribution shift. Unlike …
template adjuster (T3A)}, aiming to robustify a model to unknown distribution shift. Unlike …
Selfreg: Self-supervised contrastive regularization for domain generalization
In general, an experimental environment for deep learning assumes that the training and the
test dataset are sampled from the same distribution. However, in real-world situations, a …
test dataset are sampled from the same distribution. However, in real-world situations, a …
In search of lost domain generalization
The goal of domain generalization algorithms is to predict well on distributions different from
those seen during training. While a myriad of domain generalization algorithms exist …
those seen during training. While a myriad of domain generalization algorithms exist …
Fishr: Invariant gradient variances for out-of-distribution generalization
Learning robust models that generalize well under changes in the data distribution is critical
for real-world applications. To this end, there has been a growing surge of interest to learn …
for real-world applications. To this end, there has been a growing surge of interest to learn …
Swad: Domain generalization by seeking flat minima
Abstract Domain generalization (DG) methods aim to achieve generalizability to an unseen
target domain by using only training data from the source domains. Although a variety of DG …
target domain by using only training data from the source domains. Although a variety of DG …