Physics-informed machine learning: case studies for weather and climate modelling

K Kashinath, M Mustafa, A Albert… - … of the Royal …, 2021 - royalsocietypublishing.org
Machine learning (ML) provides novel and powerful ways of accurately and efficiently
recognizing complex patterns, emulating nonlinear dynamics, and predicting the spatio …

Towards neural Earth system modelling by integrating artificial intelligence in Earth system science

C Irrgang, N Boers, M Sonnewald, EA Barnes… - Nature Machine …, 2021 - nature.com
Earth system models (ESMs) are our main tools for quantifying the physical state of the Earth
and predicting how it might change in the future under ongoing anthropogenic forcing. In …

Machine learning in weather prediction and climate analyses—applications and perspectives

B Bochenek, Z Ustrnul - Atmosphere, 2022 - mdpi.com
In this paper, we performed an analysis of the 500 most relevant scientific articles published
since 2018, concerning machine learning methods in the field of climate and numerical …

[PDF][PDF] Integrating physics-based modeling with machine learning: A survey

J Willard, X Jia, S Xu, M Steinbach… - arxiv preprint arxiv …, 2020 - beiyulincs.github.io
There is a growing consensus that solutions to complex science and engineering problems
require novel methodologies that are able to integrate traditional physics-based modeling …

WeatherBench: a benchmark data set for data‐driven weather forecasting

S Rasp, PD Dueben, S Scher, JA Weyn… - Journal of Advances …, 2020 - Wiley Online Library
Data‐driven approaches, most prominently deep learning, have become powerful tools for
prediction in many domains. A natural question to ask is whether data‐driven methods could …

Integrating scientific knowledge with machine learning for engineering and environmental systems

J Willard, X Jia, S Xu, M Steinbach, V Kumar - ACM Computing Surveys, 2022 - dl.acm.org
There is a growing consensus that solutions to complex science and engineering problems
require novel methodologies that are able to integrate traditional physics-based modeling …

Enforcing analytic constraints in neural networks emulating physical systems

T Beucler, M Pritchard, S Rasp, J Ott, P Baldi… - Physical Review Letters, 2021 - APS
Neural networks can emulate nonlinear physical systems with high accuracy, yet they may
produce physically inconsistent results when violating fundamental constraints. Here, we …

Physics-guided machine learning for scientific discovery: An application in simulating lake temperature profiles

X Jia, J Willard, A Karpatne, JS Read, JA Zwart… - ACM/IMS Transactions …, 2021 - dl.acm.org
Physics-based models are often used to study engineering and environmental systems. The
ability to model these systems is the key to achieving our future environmental sustainability …

DC3: A learning method for optimization with hard constraints

PL Donti, D Rolnick, JZ Kolter - arxiv preprint arxiv:2104.12225, 2021 - arxiv.org
Large optimization problems with hard constraints arise in many settings, yet classical
solvers are often prohibitively slow, motivating the use of deep networks as cheap" …

Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions

J Yuval, PA O'Gorman - Nature communications, 2020 - nature.com
Global climate models represent small-scale processes such as convection using subgrid
models known as parameterizations, and these parameterizations contribute substantially to …