Information retrieval: recent advances and beyond

KA Hambarde, H Proenca - IEEE Access, 2023 - ieeexplore.ieee.org
This paper provides an extensive and thorough overview of the models and techniques
utilized in the first and second stages of the typical information retrieval processing chain …

A survey of techniques for optimizing transformer inference

KT Chitty-Venkata, S Mittal, M Emani… - Journal of Systems …, 2023 - Elsevier
Recent years have seen a phenomenal rise in the performance and applications of
transformer neural networks. The family of transformer networks, including Bidirectional …

Dense text retrieval based on pretrained language models: A survey

WX Zhao, J Liu, R Ren, JR Wen - ACM Transactions on Information …, 2024 - dl.acm.org
Text retrieval is a long-standing research topic on information seeking, where a system is
required to return relevant information resources to user's queries in natural language. From …

Promptagator: Few-shot dense retrieval from 8 examples

Z Dai, VY Zhao, J Ma, Y Luan, J Ni, J Lu… - arxiv preprint arxiv …, 2022 - arxiv.org
Much recent research on information retrieval has focused on how to transfer from one task
(typically with abundant supervised data) to various other tasks where supervision is limited …

Colbertv2: Effective and efficient retrieval via lightweight late interaction

K Santhanam, O Khattab, J Saad-Falcon… - arxiv preprint arxiv …, 2021 - arxiv.org
Neural information retrieval (IR) has greatly advanced search and other knowledge-
intensive language tasks. While many neural IR methods encode queries and documents …

Beir: A heterogenous benchmark for zero-shot evaluation of information retrieval models

N Thakur, N Reimers, A Rücklé, A Srivastava… - arxiv preprint arxiv …, 2021 - arxiv.org
Existing neural information retrieval (IR) models have often been studied in homogeneous
and narrow settings, which has considerably limited insights into their out-of-distribution …

Pyserini: A Python toolkit for reproducible information retrieval research with sparse and dense representations

J Lin, X Ma, SC Lin, JH Yang, R Pradeep… - Proceedings of the 44th …, 2021 - dl.acm.org
Pyserini is a Python toolkit for reproducible information retrieval research with sparse and
dense representations. It aims to provide effective, reproducible, and easy-to-use first-stage …

Efficiently teaching an effective dense retriever with balanced topic aware sampling

S Hofstätter, SC Lin, JH Yang, J Lin… - Proceedings of the 44th …, 2021 - dl.acm.org
A vital step towards the widespread adoption of neural retrieval models is their resource
efficiency throughout the training, indexing and query workflows. The neural IR community …

SPLADE: Sparse lexical and expansion model for first stage ranking

T Formal, B Piwowarski, S Clinchant - Proceedings of the 44th …, 2021 - dl.acm.org
In neural Information Retrieval, ongoing research is directed towards improving the first
retriever in ranking pipelines. Learning dense embeddings to conduct retrieval using …

RocketQAv2: A joint training method for dense passage retrieval and passage re-ranking

R Ren, Y Qu, J Liu, WX Zhao, Q She, H Wu… - arxiv preprint arxiv …, 2021 - arxiv.org
In various natural language processing tasks, passage retrieval and passage re-ranking are
two key procedures in finding and ranking relevant information. Since both the two …