A comprehensive survey on pretrained foundation models: A history from bert to chatgpt

C Zhou, Q Li, C Li, J Yu, Y Liu, G Wang… - International Journal of …, 2024 - Springer
Abstract Pretrained Foundation Models (PFMs) are regarded as the foundation for various
downstream tasks across different data modalities. A PFM (eg, BERT, ChatGPT, GPT-4) is …

Machine learning methods for small data challenges in molecular science

B Dou, Z Zhu, E Merkurjev, L Ke, L Chen… - Chemical …, 2023 - ACS Publications
Small data are often used in scientific and engineering research due to the presence of
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …

Segment everything everywhere all at once

X Zou, J Yang, H Zhang, F Li, L Li… - Advances in …, 2024 - proceedings.neurips.cc
In this work, we present SEEM, a promotable and interactive model for segmenting
everything everywhere all at once in an image. In SEEM, we propose a novel and versatile …

Lisa: Reasoning segmentation via large language model

X Lai, Z Tian, Y Chen, Y Li, Y Yuan… - Proceedings of the …, 2024 - openaccess.thecvf.com
Although perception systems have made remarkable advancements in recent years they still
rely on explicit human instruction or pre-defined categories to identify the target objects …

Cross-city matters: A multimodal remote sensing benchmark dataset for cross-city semantic segmentation using high-resolution domain adaptation networks

D Hong, B Zhang, H Li, Y Li, J Yao, C Li… - Remote Sensing of …, 2023 - Elsevier
Artificial intelligence (AI) approaches nowadays have gained remarkable success in single-
modality-dominated remote sensing (RS) applications, especially with an emphasis on …

Convolutions die hard: Open-vocabulary segmentation with single frozen convolutional clip

Q Yu, J He, X Deng, X Shen… - Advances in Neural …, 2023 - proceedings.neurips.cc
Open-vocabulary segmentation is a challenging task requiring segmenting and recognizing
objects from an open set of categories in diverse environments. One way to address this …

Side adapter network for open-vocabulary semantic segmentation

M Xu, Z Zhang, F Wei, H Hu… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
This paper presents a new framework for open-vocabulary semantic segmentation with the
pre-trained vision-language model, named SAN. Our approach models the semantic …

Segment and Recognize Anything at Any Granularity

F Li, H Zhang, P Sun, X Zou, S Liu, C Li, J Yang… - … on Computer Vision, 2024 - Springer
In this work, we introduce Semantic-SAM, an augmented image segmentation foundation for
segmenting and recognizing anything at desired granularities. Compared to the …

Segnext: Rethinking convolutional attention design for semantic segmentation

MH Guo, CZ Lu, Q Hou, Z Liu… - Advances in Neural …, 2022 - proceedings.neurips.cc
We present SegNeXt, a simple convolutional network architecture for semantic
segmentation. Recent transformer-based models have dominated the field of se-mantic …

Medical image segmentation review: The success of u-net

R Azad, EK Aghdam, A Rauland, Y Jia… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Automatic medical image segmentation is a crucial topic in the medical domain and
successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the …