Resistive switching materials for information processing

Z Wang, H Wu, GW Burr, CS Hwang, KL Wang… - Nature Reviews …, 2020 - nature.com
The rapid increase in information in the big-data era calls for changes to information-
processing paradigms, which, in turn, demand new circuit-building blocks to overcome the …

Memristive crossbar arrays for storage and computing applications

H Li, S Wang, X Zhang, W Wang… - Advanced Intelligent …, 2021 - Wiley Online Library
The emergence of memristors with potential applications in data storage and artificial
intelligence has attracted wide attentions. Memristors are assembled in crossbar arrays with …

A 64-core mixed-signal in-memory compute chip based on phase-change memory for deep neural network inference

M Le Gallo, R Khaddam-Aljameh, M Stanisavljevic… - Nature …, 2023 - nature.com
Analogue in-memory computing (AIMC) with resistive memory devices could reduce the
latency and energy consumption of deep neural network inference tasks by directly …

Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators

MJ Rasch, C Mackin, M Le Gallo, A Chen… - Nature …, 2023 - nature.com
Analog in-memory computing—a promising approach for energy-efficient acceleration of
deep learning workloads—computes matrix-vector multiplications but only approximately …

Accurate deep neural network inference using computational phase-change memory

V Joshi, M Le Gallo, S Haefeli, I Boybat… - Nature …, 2020 - nature.com
In-memory computing using resistive memory devices is a promising non-von Neumann
approach for making energy-efficient deep learning inference hardware. However, due to …