Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Feedback classification and optimal control with applications to the controlled Lotka–Volterra model
B Bonnard, J Rouot - Optimization, 2024 - Taylor & Francis
Let M be a σ-compact C∞ manifold of dimension n≥ 2 and consider a single-input control
system: x˙(t)= X (x (t))+ u (t) Y (x (t)), where X, Y are C∞ vector fields on M. We prove that …
system: x˙(t)= X (x (t))+ u (t) Y (x (t)), where X, Y are C∞ vector fields on M. We prove that …
Geometric approach to Pontryagin's maximum principle
Since the second half of the 20th century, Pontryagin's Maximum Principle has been widely
discussed and used as a method to solve optimal control problems in medicine, robotics …
discussed and used as a method to solve optimal control problems in medicine, robotics …
[HTML][HTML] Normal forms and invariants for 2-dimensional almost-Riemannian structures
U Boscain, G Charlot, R Ghezzi - Differential Geometry and its Applications, 2013 - Elsevier
2-Dimensional almost-Riemannian structures are generalized Riemannian structures on
surfaces for which a local orthonormal frame is given by a Lie bracket generating pair of …
surfaces for which a local orthonormal frame is given by a Lie bracket generating pair of …
[PDF][PDF] Feedback differential invariants
V Lychagin - arxiv preprint arxiv:0812.1334, 2008 - arxiv.org
arxiv:0812.1334v1 [math.DG] 7 Dec 2008 Page 1 arxiv:0812.1334v1 [math.DG] 7 Dec 2008
Acta Applicandae Mathematicae manuscript No. (will be inserted by the editor) Feedback …
Acta Applicandae Mathematicae manuscript No. (will be inserted by the editor) Feedback …
Feedback Equivalence of 1-dimensional Control Systems of the 1-st Order
V Lychagin - arxiv preprint arxiv:0812.1351, 2008 - arxiv.org
arxiv:0812.1351v1 [math.DG] 7 Dec 2008 Page 1 arxiv:0812.1351v1 [math.DG] 7 Dec 2008
Feedback Equivalence of 1-dimensional Control Systems of the 1-st Order Valentin Lychagin …
Feedback Equivalence of 1-dimensional Control Systems of the 1-st Order Valentin Lychagin …
Geometry of control-affine systems
JN Clelland, CG Moseley, GR Wilkens - SIGMA. Symmetry, Integrability …, 2009 - emis.de
Motivated by control-affine systems in optimal control theory, we introduce the notion of a
point-affine distribution on a manifold X–ie, an affine distribution F together with a …
point-affine distribution on a manifold X–ie, an affine distribution F together with a …
Инварианты Петрова гамильтоновых систем с управляющим параметром
АГ Кушнер, ВВ Лычагин - Автоматика и телемеханика, 2013 - mathnet.ru
Рассмотрена проблема классификации гамильтоновых систем со скалярным
управляющим параметром относительно преобразований обратной связи. Построены …
управляющим параметром относительно преобразований обратной связи. Построены …
Constraint algorithm for extremals in optimal control problems
M Barbero-Linan… - International Journal of …, 2009 - World Scientific
A geometric method is described to characterize the different kinds of extremals in optimal
control theory. This comes from the use of a presymplectic constraint algorithm starting from …
control theory. This comes from the use of a presymplectic constraint algorithm starting from …
Geometry of rank 2 distributions with nonzero Wilczynski invariants
In the famous 1910 “cinq variables” paper Cartan showed in particular that for maximally
nonholonomic rank 2 distributions in ℝ5 with non-zero covariant binary biquadratic form the …
nonholonomic rank 2 distributions in ℝ5 with non-zero covariant binary biquadratic form the …
Petrov invariants of Hamiltonian systems with a control parameter
The problem is considered of the classification of Hamiltonian systems with a scalar control
parameter relative to feedback transformations. Differential invariants of these systems …
parameter relative to feedback transformations. Differential invariants of these systems …