A review on fairness in machine learning

D Pessach, E Shmueli - ACM Computing Surveys (CSUR), 2022 - dl.acm.org
An increasing number of decisions regarding the daily lives of human beings are being
controlled by artificial intelligence and machine learning (ML) algorithms in spheres ranging …

Trustworthy artificial intelligence: a review

D Kaur, S Uslu, KJ Rittichier, A Durresi - ACM computing surveys (CSUR …, 2022 - dl.acm.org
Artificial intelligence (AI) and algorithmic decision making are having a profound impact on
our daily lives. These systems are vastly used in different high-stakes applications like …

A survey on datasets for fairness‐aware machine learning

T Le Quy, A Roy, V Iosifidis, W Zhang… - … Reviews: Data Mining …, 2022 - Wiley Online Library
As decision‐making increasingly relies on machine learning (ML) and (big) data, the issue
of fairness in data‐driven artificial intelligence systems is receiving increasing attention from …

The evolution of distributed systems for graph neural networks and their origin in graph processing and deep learning: A survey

J Vatter, R Mayer, HA Jacobsen - ACM Computing Surveys, 2023 - dl.acm.org
Graph neural networks (GNNs) are an emerging research field. This specialized deep
neural network architecture is capable of processing graph structured data and bridges the …

Trustworthy ai: A computational perspective

H Liu, Y Wang, W Fan, X Liu, Y Li, S Jain, Y Liu… - ACM Transactions on …, 2022 - dl.acm.org
In the past few decades, artificial intelligence (AI) technology has experienced swift
developments, changing everyone's daily life and profoundly altering the course of human …

A survey on bias and fairness in machine learning

N Mehrabi, F Morstatter, N Saxena, K Lerman… - ACM computing …, 2021 - dl.acm.org
With the widespread use of artificial intelligence (AI) systems and applications in our
everyday lives, accounting for fairness has gained significant importance in designing and …

In-processing modeling techniques for machine learning fairness: A survey

M Wan, D Zha, N Liu, N Zou - ACM Transactions on Knowledge …, 2023 - dl.acm.org
Machine learning models are becoming pervasive in high-stakes applications. Despite their
clear benefits in terms of performance, the models could show discrimination against …

Algorithmic fairness

D Pessach, E Shmueli - Machine Learning for Data Science Handbook …, 2023 - Springer
An increasing number of decisions regarding the daily lives of human beings are being
controlled by artificial intelligence (AI) and machine learning (ML) algorithms in spheres …

Fair algorithms for clustering

S Bera, D Chakrabarty, N Flores… - Advances in Neural …, 2019 - proceedings.neurips.cc
We study the problem of finding low-cost {\em fair clusterings} in data where each data point
may belong to many protected groups. Our work significantly generalizes the seminal work …

Explainable k-means and k-medians clustering

M Moshkovitz, S Dasgupta… - … on machine learning, 2020 - proceedings.mlr.press
Many clustering algorithms lead to cluster assignments that are hard to explain, partially
because they depend on all the features of the data in a complicated way. To improve …