Survey of intrusion detection systems: techniques, datasets and challenges

A Khraisat, I Gondal, P Vamplew, J Kamruzzaman - Cybersecurity, 2019 - Springer
Cyber-attacks are becoming more sophisticated and thereby presenting increasing
challenges in accurately detecting intrusions. Failure to prevent the intrusions could degrade …

Large language models on graphs: A comprehensive survey

B **, G Liu, C Han, M Jiang, H Ji… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Large language models (LLMs), such as GPT4 and LLaMA, are creating significant
advancements in natural language processing, due to their strong text encoding/decoding …

Graph contrastive learning automated

Y You, T Chen, Y Shen, Z Wang - … Conference on Machine …, 2021 - proceedings.mlr.press
Self-supervised learning on graph-structured data has drawn recent interest for learning
generalizable, transferable and robust representations from unlabeled graphs. Among …

Parameterized explainer for graph neural network

D Luo, W Cheng, D Xu, W Yu, B Zong… - Advances in neural …, 2020 - proceedings.neurips.cc
Despite recent progress in Graph Neural Networks (GNNs), explaining predictions made by
GNNs remains a challenging open problem. The leading method mainly addresses the local …

Simgrace: A simple framework for graph contrastive learning without data augmentation

J **a, L Wu, J Chen, B Hu, SZ Li - … of the ACM Web Conference 2022, 2022 - dl.acm.org
Graph contrastive learning (GCL) has emerged as a dominant technique for graph
representation learning which maximizes the mutual information between paired graph …

A critical review of intrusion detection systems in the internet of things: techniques, deployment strategy, validation strategy, attacks, public datasets and challenges

A Khraisat, A Alazab - Cybersecurity, 2021 - Springer
Abstract The Internet of Things (IoT) has been rapidly evolving towards making a greater
impact on everyday life to large industrial systems. Unfortunately, this has attracted the …

Weisfeiler and lehman go cellular: Cw networks

C Bodnar, F Frasca, N Otter, Y Wang… - Advances in neural …, 2021 - proceedings.neurips.cc
Abstract Graph Neural Networks (GNNs) are limited in their expressive power, struggle with
long-range interactions and lack a principled way to model higher-order structures. These …

Self-supervised learning on graphs: Contrastive, generative, or predictive

L Wu, H Lin, C Tan, Z Gao, SZ Li - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Deep learning on graphs has recently achieved remarkable success on a variety of tasks,
while such success relies heavily on the massive and carefully labeled data. However …

Graph matching networks for learning the similarity of graph structured objects

Y Li, C Gu, T Dullien, O Vinyals… - … conference on machine …, 2019 - proceedings.mlr.press
This paper addresses the challenging problem of retrieval and matching of graph structured
objects, and makes two key contributions. First, we demonstrate how Graph Neural …

Knowledge graph-enhanced molecular contrastive learning with functional prompt

Y Fang, Q Zhang, N Zhang, Z Chen, X Zhuang… - Nature Machine …, 2023 - nature.com
Deep learning models can accurately predict molecular properties and help making the
search for potential drug candidates faster and more efficient. Many existing methods are …