Causal inference for time series
Many research questions in Earth and environmental sciences are inherently causal,
requiring robust analyses to establish whether and how changes in one variable cause …
requiring robust analyses to establish whether and how changes in one variable cause …
Shortcut learning in deep neural networks
Deep learning has triggered the current rise of artificial intelligence and is the workhorse of
today's machine intelligence. Numerous success stories have rapidly spread all over …
today's machine intelligence. Numerous success stories have rapidly spread all over …
Last layer re-training is sufficient for robustness to spurious correlations
Neural network classifiers can largely rely on simple spurious features, such as
backgrounds, to make predictions. However, even in these cases, we show that they still …
backgrounds, to make predictions. However, even in these cases, we show that they still …
Towards out-of-distribution generalization: A survey
Traditional machine learning paradigms are based on the assumption that both training and
test data follow the same statistical pattern, which is mathematically referred to as …
test data follow the same statistical pattern, which is mathematically referred to as …
Toward causal representation learning
The two fields of machine learning and graphical causality arose and are developed
separately. However, there is, now, cross-pollination and increasing interest in both fields to …
separately. However, there is, now, cross-pollination and increasing interest in both fields to …
Surgical fine-tuning improves adaptation to distribution shifts
A common approach to transfer learning under distribution shift is to fine-tune the last few
layers of a pre-trained model, preserving learned features while also adapting to the new …
layers of a pre-trained model, preserving learned features while also adapting to the new …
Underspecification presents challenges for credibility in modern machine learning
Machine learning (ML) systems often exhibit unexpectedly poor behavior when they are
deployed in real-world domains. We identify underspecification in ML pipelines as a key …
deployed in real-world domains. We identify underspecification in ML pipelines as a key …
Causality inspired representation learning for domain generalization
Abstract Domain generalization (DG) is essentially an out-of-distribution problem, aiming to
generalize the knowledge learned from multiple source domains to an unseen target …
generalize the knowledge learned from multiple source domains to an unseen target …
In search of lost domain generalization
The goal of domain generalization algorithms is to predict well on distributions different from
those seen during training. While a myriad of domain generalization algorithms exist …
those seen during training. While a myriad of domain generalization algorithms exist …
Fishr: Invariant gradient variances for out-of-distribution generalization
Learning robust models that generalize well under changes in the data distribution is critical
for real-world applications. To this end, there has been a growing surge of interest to learn …
for real-world applications. To this end, there has been a growing surge of interest to learn …