Challenges and opportunities in quantum machine learning

M Cerezo, G Verdon, HY Huang, L Cincio… - Nature Computational …, 2022 - nature.com
At the intersection of machine learning and quantum computing, quantum machine learning
has the potential of accelerating data analysis, especially for quantum data, with …

Machine learning-guided protein engineering

P Kouba, P Kohout, F Haddadi, A Bushuiev… - ACS …, 2023 - ACS Publications
Recent progress in engineering highly promising biocatalysts has increasingly involved
machine learning methods. These methods leverage existing experimental and simulation …

Quantum advantage in learning from experiments

HY Huang, M Broughton, J Cotler, S Chen, J Li… - Science, 2022 - science.org
Quantum technology promises to revolutionize how we learn about the physical world. An
experiment that processes quantum data with a quantum computer could have substantial …

Quantum variational algorithms are swamped with traps

ER Anschuetz, BT Kiani - Nature Communications, 2022 - nature.com
One of the most important properties of classical neural networks is how surprisingly
trainable they are, though their training algorithms typically rely on optimizing complicated …

Exploiting symmetry in variational quantum machine learning

JJ Meyer, M Mularski, E Gil-Fuster, AA Mele, F Arzani… - PRX Quantum, 2023 - APS
Variational quantum machine learning is an extensively studied application of near-term
quantum computers. The success of variational quantum learning models crucially depends …

Is quantum advantage the right goal for quantum machine learning?

M Schuld, N Killoran - Prx Quantum, 2022 - APS
Machine learning is frequently listed among the most promising applications for quantum
computing. This is in fact a curious choice: the machine-learning algorithms of today are …

Group-invariant quantum machine learning

M Larocca, F Sauvage, FM Sbahi, G Verdon, PJ Coles… - PRX Quantum, 2022 - APS
Quantum machine learning (QML) models are aimed at learning from data encoded in
quantum states. Recently, it has been shown that models with little to no inductive biases (ie …

Theory for equivariant quantum neural networks

QT Nguyen, L Schatzki, P Braccia, M Ragone, PJ Coles… - PRX Quantum, 2024 - APS
Quantum neural network architectures that have little to no inductive biases are known to
face trainability and generalization issues. Inspired by a similar problem, recent …

Quantum machine learning: from physics to software engineering

A Melnikov, M Kordzanganeh, A Alodjants… - Advances in Physics …, 2023 - Taylor & Francis
Quantum machine learning is a rapidly growing field at the intersection of quantum
technology and artificial intelligence. This review provides a two-fold overview of several key …

Theoretical guarantees for permutation-equivariant quantum neural networks

L Schatzki, M Larocca, QT Nguyen, F Sauvage… - npj Quantum …, 2024 - nature.com
Despite the great promise of quantum machine learning models, there are several
challenges one must overcome before unlocking their full potential. For instance, models …