Challenges and opportunities in quantum machine learning

M Cerezo, G Verdon, HY Huang, L Cincio… - Nature computational …, 2022 - nature.com
At the intersection of machine learning and quantum computing, quantum machine learning
has the potential of accelerating data analysis, especially for quantum data, with …

Machine learning-guided protein engineering

P Kouba, P Kohout, F Haddadi, A Bushuiev… - ACS …, 2023 - ACS Publications
Recent progress in engineering highly promising biocatalysts has increasingly involved
machine learning methods. These methods leverage existing experimental and simulation …

Does provable absence of barren plateaus imply classical simulability? or, why we need to rethink variational quantum computing

M Cerezo, M Larocca, D García-Martín, NL Diaz… - arxiv preprint arxiv …, 2023 - arxiv.org
A large amount of effort has recently been put into understanding the barren plateau
phenomenon. In this perspective article, we face the increasingly loud elephant in the room …

Quantum advantage in learning from experiments

HY Huang, M Broughton, J Cotler, S Chen, J Li… - Science, 2022 - science.org
Quantum technology promises to revolutionize how we learn about the physical world. An
experiment that processes quantum data with a quantum computer could have substantial …

Quantum variational algorithms are swamped with traps

ER Anschuetz, BT Kiani - Nature Communications, 2022 - nature.com
One of the most important properties of classical neural networks is how surprisingly
trainable they are, though their training algorithms typically rely on optimizing complicated …

Is quantum advantage the right goal for quantum machine learning?

M Schuld, N Killoran - Prx Quantum, 2022 - APS
Machine learning is frequently listed among the most promising applications for quantum
computing. This is in fact a curious choice: the machine-learning algorithms of today are …

A survey on the complexity of learning quantum states

A Anshu, S Arunachalam - Nature Reviews Physics, 2024 - nature.com
Quantum learning theory is a new and very active area of research at the intersection of
quantum computing and machine learning. Important breakthroughs in the past two years …

Exploiting symmetry in variational quantum machine learning

JJ Meyer, M Mularski, E Gil-Fuster, AA Mele, F Arzani… - PRX quantum, 2023 - APS
Variational quantum machine learning is an extensively studied application of near-term
quantum computers. The success of variational quantum learning models crucially depends …

Group-invariant quantum machine learning

M Larocca, F Sauvage, FM Sbahi, G Verdon, PJ Coles… - PRX quantum, 2022 - APS
Quantum machine learning (QML) models are aimed at learning from data encoded in
quantum states. Recently, it has been shown that models with little to no inductive biases (ie …

Quantum machine learning: from physics to software engineering

A Melnikov, M Kordzanganeh, A Alodjants… - Advances in Physics …, 2023 - Taylor & Francis
Quantum machine learning is a rapidly growing field at the intersection of quantum
technology and artificial intelligence. This review provides a two-fold overview of several key …