Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Challenges and opportunities in quantum machine learning
At the intersection of machine learning and quantum computing, quantum machine learning
has the potential of accelerating data analysis, especially for quantum data, with …
has the potential of accelerating data analysis, especially for quantum data, with …
Machine learning-guided protein engineering
Recent progress in engineering highly promising biocatalysts has increasingly involved
machine learning methods. These methods leverage existing experimental and simulation …
machine learning methods. These methods leverage existing experimental and simulation …
Does provable absence of barren plateaus imply classical simulability? or, why we need to rethink variational quantum computing
A large amount of effort has recently been put into understanding the barren plateau
phenomenon. In this perspective article, we face the increasingly loud elephant in the room …
phenomenon. In this perspective article, we face the increasingly loud elephant in the room …
Quantum advantage in learning from experiments
Quantum technology promises to revolutionize how we learn about the physical world. An
experiment that processes quantum data with a quantum computer could have substantial …
experiment that processes quantum data with a quantum computer could have substantial …
Quantum variational algorithms are swamped with traps
One of the most important properties of classical neural networks is how surprisingly
trainable they are, though their training algorithms typically rely on optimizing complicated …
trainable they are, though their training algorithms typically rely on optimizing complicated …
Is quantum advantage the right goal for quantum machine learning?
Machine learning is frequently listed among the most promising applications for quantum
computing. This is in fact a curious choice: the machine-learning algorithms of today are …
computing. This is in fact a curious choice: the machine-learning algorithms of today are …
A survey on the complexity of learning quantum states
Quantum learning theory is a new and very active area of research at the intersection of
quantum computing and machine learning. Important breakthroughs in the past two years …
quantum computing and machine learning. Important breakthroughs in the past two years …
Exploiting symmetry in variational quantum machine learning
Variational quantum machine learning is an extensively studied application of near-term
quantum computers. The success of variational quantum learning models crucially depends …
quantum computers. The success of variational quantum learning models crucially depends …
Group-invariant quantum machine learning
Quantum machine learning (QML) models are aimed at learning from data encoded in
quantum states. Recently, it has been shown that models with little to no inductive biases (ie …
quantum states. Recently, it has been shown that models with little to no inductive biases (ie …
Quantum machine learning: from physics to software engineering
Quantum machine learning is a rapidly growing field at the intersection of quantum
technology and artificial intelligence. This review provides a two-fold overview of several key …
technology and artificial intelligence. This review provides a two-fold overview of several key …