Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Graph neural networks for temporal graphs: State of the art, open challenges, and opportunities
Graph Neural Networks (GNNs) have become the leading paradigm for learning on (static)
graph-structured data. However, many real-world systems are dynamic in nature, since the …
graph-structured data. However, many real-world systems are dynamic in nature, since the …
Community detection in node-attributed social networks: a survey
P Chunaev - Computer Science Review, 2020 - Elsevier
Community detection is a fundamental problem in social network analysis consisting,
roughly speaking, in unsupervised dividing social actors (modeled as nodes in a social …
roughly speaking, in unsupervised dividing social actors (modeled as nodes in a social …
Misinformation in social media: definition, manipulation, and detection
The widespread dissemination of misinformation in social media has recently received a lot
of attention in academia. While the problem of misinformation in social media has been …
of attention in academia. While the problem of misinformation in social media has been …
Deep anomaly detection on attributed networks
Attributed networks are ubiquitous and form a critical component of modern information
infrastructure, where additional node attributes complement the raw network structure in …
infrastructure, where additional node attributes complement the raw network structure in …
Unicorn: Runtime provenance-based detector for advanced persistent threats
Advanced Persistent Threats (APTs) are difficult to detect due to their" low-and-slow" attack
patterns and frequent use of zero-day exploits. We present UNICORN, an anomaly-based …
patterns and frequent use of zero-day exploits. We present UNICORN, an anomaly-based …
Netwalk: A flexible deep embedding approach for anomaly detection in dynamic networks
Massive and dynamic networks arise in many practical applications such as social media,
security and public health. Given an evolutionary network, it is crucial to detect structural …
security and public health. Given an evolutionary network, it is crucial to detect structural …
Few-shot network anomaly detection via cross-network meta-learning
Network anomaly detection, also known as graph anomaly detection, aims to find network
elements (eg, nodes, edges, subgraphs) with significantly different behaviors from the vast …
elements (eg, nodes, edges, subgraphs) with significantly different behaviors from the vast …
Graph based anomaly detection and description: a survey
Detecting anomalies in data is a vital task, with numerous high-impact applications in areas
such as security, finance, health care, and law enforcement. While numerous techniques …
such as security, finance, health care, and law enforcement. While numerous techniques …
[HTML][HTML] LSTM-based VAE-GAN for time-series anomaly detection
Z Niu, K Yu, X Wu - Sensors, 2020 - mdpi.com
Time series anomaly detection is widely used to monitor the equipment sates through the
data collected in the form of time series. At present, the deep learning method based on …
data collected in the form of time series. At present, the deep learning method based on …
[KNIHA][B] An introduction to outlier analysis
CC Aggarwal, CC Aggarwal - 2017 - Springer
Outliers are also referred to as abnormalities, discordants, deviants, or anomalies in the data
mining and statistics literature. In most applications, the data is created by one or more …
mining and statistics literature. In most applications, the data is created by one or more …