A review of safe reinforcement learning: Methods, theory and applications
Reinforcement Learning (RL) has achieved tremendous success in many complex decision-
making tasks. However, safety concerns are raised during deploying RL in real-world …
making tasks. However, safety concerns are raised during deploying RL in real-world …
Reinforcement learning based recommender systems: A survey
Recommender systems (RSs) have become an inseparable part of our everyday lives. They
help us find our favorite items to purchase, our friends on social networks, and our favorite …
help us find our favorite items to purchase, our friends on social networks, and our favorite …
Interpretable machine learning: Fundamental principles and 10 grand challenges
Interpretability in machine learning (ML) is crucial for high stakes decisions and
troubleshooting. In this work, we provide fundamental principles for interpretable ML, and …
troubleshooting. In this work, we provide fundamental principles for interpretable ML, and …
Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing
Neuromorphic computing, a computing paradigm inspired by the human brain, enables
energy-efficient and fast artificial neural networks. To process information, neuromorphic …
energy-efficient and fast artificial neural networks. To process information, neuromorphic …
Frequency domain model augmentation for adversarial attack
For black-box attacks, the gap between the substitute model and the victim model is usually
large, which manifests as a weak attack performance. Motivated by the observation that the …
large, which manifests as a weak attack performance. Motivated by the observation that the …
Machine learning in additive manufacturing: State-of-the-art and perspectives
Additive manufacturing (AM) has emerged as a disruptive digital manufacturing technology.
However, its broad adoption in industry is still hindered by high entry barriers of design for …
However, its broad adoption in industry is still hindered by high entry barriers of design for …
Offline reinforcement learning: Tutorial, review, and perspectives on open problems
In this tutorial article, we aim to provide the reader with the conceptual tools needed to get
started on research on offline reinforcement learning algorithms: reinforcement learning …
started on research on offline reinforcement learning algorithms: reinforcement learning …
Deep reinforcement learning for autonomous driving: A survey
With the development of deep representation learning, the domain of reinforcement learning
(RL) has become a powerful learning framework now capable of learning complex policies …
(RL) has become a powerful learning framework now capable of learning complex policies …
Morel: Model-based offline reinforcement learning
R Kidambi, A Rajeswaran… - Advances in neural …, 2020 - proceedings.neurips.cc
In offline reinforcement learning (RL), the goal is to learn a highly rewarding policy based
solely on a dataset of historical interactions with the environment. This serves as an extreme …
solely on a dataset of historical interactions with the environment. This serves as an extreme …
A survey of deep learning techniques for autonomous driving
The last decade witnessed increasingly rapid progress in self‐driving vehicle technology,
mainly backed up by advances in the area of deep learning and artificial intelligence (AI) …
mainly backed up by advances in the area of deep learning and artificial intelligence (AI) …