Real-world single image super-resolution: A brief review

H Chen, X He, L Qing, Y Wu, C Ren, RE Sheriff, C Zhu - Information Fusion, 2022 - Elsevier
Single image super-resolution (SISR), which aims to reconstruct a high-resolution (HR)
image from a low-resolution (LR) observation, has been an active research topic in the area …

Deep learning for image enhancement and correction in magnetic resonance imaging—state-of-the-art and challenges

Z Chen, K Pawar, M Ekanayake, C Pain, S Zhong… - Journal of Digital …, 2023 - Springer
Magnetic resonance imaging (MRI) provides excellent soft-tissue contrast for clinical
diagnoses and research which underpin many recent breakthroughs in medicine and …

Medical image super-resolution reconstruction algorithms based on deep learning: A survey

D Qiu, Y Cheng, X Wang - Computer Methods and Programs in …, 2023 - Elsevier
Background and objective With the high-resolution (HR) requirements of medical images in
clinical practice, super-resolution (SR) reconstruction algorithms based on low-resolution …

Artificial intelligence in medical imaging

JC Gore - Magnetic resonance imaging, 2020 - Elsevier
The medical specialty radiology has experienced a number of extremely important and
influential technical developments in the past that have affected how medical imaging is …

SMORE: a self-supervised anti-aliasing and super-resolution algorithm for MRI using deep learning

C Zhao, BE Dewey, DL Pham… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
High resolution magnetic resonance (MR) images are desired in many clinical and research
applications. Acquiring such images with high signal-to-noise (SNR), however, can require a …

Autoencoder based self-supervised test-time adaptation for medical image analysis

Y He, A Carass, L Zuo, BE Dewey, JL Prince - Medical image analysis, 2021 - Elsevier
Deep neural networks have been successfully applied to medical image analysis tasks like
segmentation and synthesis. However, even if a network is trained on a large dataset from …

Artificial Intelligence in magnetic Resonance guided Radiotherapy: Medical and physical considerations on state of art and future perspectives

D Cusumano, L Boldrini, J Dhont, C Fiorino, O Green… - Physica medica, 2021 - Elsevier
Over the last years, technological innovation in Radiotherapy (RT) led to the introduction of
Magnetic Resonance-guided RT (MRgRT) systems. Due to the higher soft tissue contrast …

Primary bone tumor detection and classification in full-field bone radiographs via YOLO deep learning model

J Li, S Li, X Li, S Miao, C Dong, C Gao, X Liu, D Hao… - European …, 2023 - Springer
Objectives Automatic bone lesions detection and classifications present a critical challenge
and are essential to support radiologists in making an accurate diagnosis of bone lesions. In …

[HTML][HTML] Emerging trends in fast MRI using deep-learning reconstruction on undersampled k-space data: a systematic review

D Singh, A Monga, HL de Moura, X Zhang, MVW Zibetti… - Bioengineering, 2023 - mdpi.com
Magnetic Resonance Imaging (MRI) is an essential medical imaging modality that provides
excellent soft-tissue contrast and high-resolution images of the human body, allowing us to …