Materials design and preparation for high energy density and high power density electrochemical supercapacitors
Electrochemical supercapacitors process ultra–high power density and long lifetime, but the
relatively low energy density hinder the wide application. Therefore, supercapacitors with …
relatively low energy density hinder the wide application. Therefore, supercapacitors with …
Defect engineering of two-dimensional transition-metal dichalcogenides: applications, challenges, and opportunities
Atomic defects, being the most prevalent zero-dimensional topological defects, are
ubiquitous in a wide range of 2D transition-metal dichalcogenides (TMDs). They could be …
ubiquitous in a wide range of 2D transition-metal dichalcogenides (TMDs). They could be …
A comprehensive review on emerging artificial neuromorphic devices
The rapid development of information technology has led to urgent requirements for high
efficiency and ultralow power consumption. In the past few decades, neuromorphic …
efficiency and ultralow power consumption. In the past few decades, neuromorphic …
Vacancy defects in 2D transition metal dichalcogenide electrocatalysts: From aggregated to atomic configuration
X Wang, J Wu, Y Zhang, Y Sun, K Ma, Y **e… - Advanced …, 2023 - Wiley Online Library
Vacancy defect engineering has been well leveraged to flexibly shape comprehensive
physicochemical properties of diverse catalysts. In particular, growing research effort has …
physicochemical properties of diverse catalysts. In particular, growing research effort has …
A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction
T Tang, Z Wang, J Guan - Chinese Journal of Catalysis, 2022 - Elsevier
The exploration of efficient and earth-rich electrocatalysts for electrochemical reactions is
critical to the implementation of large-scale green energy conversion and storage …
critical to the implementation of large-scale green energy conversion and storage …
Fermi level pinning dependent 2D semiconductor devices: challenges and prospects
Motivated by the high expectation for efficient electrostatic modulation of charge transport at
very low voltages, atomically thin 2D materials with a range of bandgaps are investigated …
very low voltages, atomically thin 2D materials with a range of bandgaps are investigated …
Defect and strain engineering of monolayer WSe2 enables site-controlled single-photon emission up to 150 K
In recent years, quantum-dot-like single-photon emitters in atomically thin van der Waals
materials have become a promising platform for future on-chip scalable quantum light …
materials have become a promising platform for future on-chip scalable quantum light …
Reconfigurable, non-volatile neuromorphic photovoltaics
The neural network image sensor—which mimics neurobiological functions of the human
retina—has recently been demonstrated to simultaneously sense and process optical …
retina—has recently been demonstrated to simultaneously sense and process optical …
Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide
Memristors are two-terminal passive circuit elements that have been developed for use in
non-volatile resistive random-access memory and may also be useful in neuromorphic …
non-volatile resistive random-access memory and may also be useful in neuromorphic …
Two-dimensional transition metal dichalcogenides: interface and defect engineering
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been considered as
promising candidates for next generation nanoelectronics. Because of their atomically-thin …
promising candidates for next generation nanoelectronics. Because of their atomically-thin …