Medical image segmentation review: The success of u-net

R Azad, EK Aghdam, A Rauland, Y Jia… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Automatic medical image segmentation is a crucial topic in the medical domain and
successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the …

Artificial intelligence and machine learning in cancer imaging

DM Koh, N Papanikolaou, U Bick, R Illing… - Communications …, 2022 - nature.com
An increasing array of tools is being developed using artificial intelligence (AI) and machine
learning (ML) for cancer imaging. The development of an optimal tool requires …

Foundation model for cancer imaging biomarkers

S Pai, D Bontempi, I Hadzic, V Prudente… - Nature machine …, 2024 - nature.com
Foundation models in deep learning are characterized by a single large-scale model trained
on vast amounts of data serving as the foundation for various downstream tasks. Foundation …

Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L) 1 blockade in patients with non-small cell lung cancer

RS Vanguri, J Luo, AT Aukerman, JV Egger, CJ Fong… - Nature cancer, 2022 - nature.com
Immunotherapy is used to treat almost all patients with advanced non-small cell lung cancer
(NSCLC); however, identifying robust predictive biomarkers remains challenging. Here we …

Criteria for the translation of radiomics into clinically useful tests

EP Huang, JPB O'Connor, LM McShane… - Nature reviews Clinical …, 2023 - nature.com
Computer-extracted tumour characteristics have been incorporated into medical imaging
computer-aided diagnosis (CAD) algorithms for decades. With the advent of radiomics, an …

[HTML][HTML] Transparency of deep neural networks for medical image analysis: A review of interpretability methods

Z Salahuddin, HC Woodruff, A Chatterjee… - Computers in biology and …, 2022 - Elsevier
Artificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for
diagnosis and treatment decisions. Deep neural networks have shown the same or better …

AI applications to medical images: From machine learning to deep learning

I Castiglioni, L Rundo, M Codari, G Di Leo, C Salvatore… - Physica medica, 2021 - Elsevier
Purpose Artificial intelligence (AI) models are playing an increasing role in biomedical
research and healthcare services. This review focuses on challenges points to be clarified …

nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation

F Isensee, PF Jaeger, SAA Kohl, J Petersen… - Nature …, 2021 - nature.com
Biomedical imaging is a driver of scientific discovery and a core component of medical care
and is being stimulated by the field of deep learning. While semantic segmentation …

Artificial intelligence-driven radiomics study in cancer: the role of feature engineering and modeling

YP Zhang, XY Zhang, YT Cheng, B Li, XZ Teng… - Military Medical …, 2023 - Springer
Modern medicine is reliant on various medical imaging technologies for non-invasively
observing patients' anatomy. However, the interpretation of medical images can be highly …

Radiomics in oncology: a practical guide

JD Shur, SJ Doran, S Kumar, D Ap Dafydd… - Radiographics, 2021 - pubs.rsna.org
Radiomics refers to the extraction of mineable data from medical imaging and has been
applied within oncology to improve diagnosis, prognostication, and clinical decision support …