A survey on federated learning for resource-constrained IoT devices

A Imteaj, U Thakker, S Wang, J Li… - IEEE Internet of Things …, 2021 - ieeexplore.ieee.org
Federated learning (FL) is a distributed machine learning strategy that generates a global
model by learning from multiple decentralized edge clients. FL enables on-device training …

A survey on federated learning systems: Vision, hype and reality for data privacy and protection

Q Li, Z Wen, Z Wu, S Hu, N Wang, Y Li… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
As data privacy increasingly becomes a critical societal concern, federated learning has
been a hot research topic in enabling the collaborative training of machine learning models …

A survey on security and privacy of federated learning

V Mothukuri, RM Parizi, S Pouriyeh, Y Huang… - Future Generation …, 2021 - Elsevier
Federated learning (FL) is a new breed of Artificial Intelligence (AI) that builds upon
decentralized data and training that brings learning to the edge or directly on-device. FL is a …

Survey on federated learning threats: Concepts, taxonomy on attacks and defences, experimental study and challenges

N Rodríguez-Barroso, D Jiménez-López, MV Luzón… - Information …, 2023 - Elsevier
Federated learning is a machine learning paradigm that emerges as a solution to the privacy-
preservation demands in artificial intelligence. As machine learning, federated learning is …

Advances and open problems in federated learning

P Kairouz, HB McMahan, B Avent… - … and trends® in …, 2021 - nowpublishers.com
Federated learning (FL) is a machine learning setting where many clients (eg, mobile
devices or whole organizations) collaboratively train a model under the orchestration of a …

Federated learning for cybersecurity: Concepts, challenges, and future directions

M Alazab, SP RM, M Parimala… - IEEE Transactions …, 2021 - ieeexplore.ieee.org
Federated learning (FL) is a recent development in artificial intelligence, which is typically
based on the concept of decentralized data. As cyberattacks are frequently happening in the …

Federated learning: Challenges, methods, and future directions

T Li, AK Sahu, A Talwalkar… - IEEE signal processing …, 2020 - ieeexplore.ieee.org
Federated learning involves training statistical models over remote devices or siloed data
centers, such as mobile phones or hospitals, while kee** data localized. Training in …

The distributed discrete gaussian mechanism for federated learning with secure aggregation

P Kairouz, Z Liu, T Steinke - International Conference on …, 2021 - proceedings.mlr.press
We consider training models on private data that are distributed across user devices. To
ensure privacy, we add on-device noise and use secure aggregation so that only the noisy …

Dynamic-fusion-based federated learning for COVID-19 detection

W Zhang, T Zhou, Q Lu, X Wang, C Zhu… - IEEE Internet of …, 2021 - ieeexplore.ieee.org
Medical diagnostic image analysis (eg, CT scan or X-Ray) using machine learning is an
efficient and accurate way to detect COVID-19 infections. However, the sharing of diagnostic …

Blockchain-enabled federated learning: A survey

Y Qu, MP Uddin, C Gan, Y **ang, L Gao… - ACM Computing …, 2022 - dl.acm.org
Federated learning (FL) has experienced a boom in recent years, which is jointly promoted
by the prosperity of machine learning and Artificial Intelligence along with emerging privacy …