Towards data-centric graph machine learning: Review and outlook

X Zheng, Y Liu, Z Bao, M Fang, X Hu, AWC Liew… - arxiv preprint arxiv …, 2023 - arxiv.org
Data-centric AI, with its primary focus on the collection, management, and utilization of data
to drive AI models and applications, has attracted increasing attention in recent years. In this …

Data augmentation for deep graph learning: A survey

K Ding, Z Xu, H Tong, H Liu - ACM SIGKDD Explorations Newsletter, 2022 - dl.acm.org
Graph neural networks, a powerful deep learning tool to model graph-structured data, have
demonstrated remarkable performance on numerous graph learning tasks. To address the …

Attribute-missing graph clustering network

W Tu, R Guan, S Zhou, C Ma, X Peng, Z Cai… - Proceedings of the …, 2024 - ojs.aaai.org
Deep clustering with attribute-missing graphs, where only a subset of nodes possesses
complete attributes while those of others are missing, is an important yet challenging topic in …

Are graph convolutional networks with random weights feasible?

C Huang, M Li, F Cao, H Fujita, Z Li… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Graph Convolutional Networks (GCNs), as a prominent example of graph neural networks,
are receiving extensive attention for their powerful capability in learning node …

Bidirectional spatial-temporal adaptive transformer for urban traffic flow forecasting

C Chen, Y Liu, L Chen, C Zhang - IEEE Transactions on Neural …, 2022 - ieeexplore.ieee.org
Urban traffic forecasting is the cornerstone of the intelligent transportation system (ITS).
Existing methods focus on spatial-temporal dependency modeling, while two intrinsic …

A survey of deep graph clustering: Taxonomy, challenge, application, and open resource

Y Liu, J **a, S Zhou, X Yang, K Liang, C Fan… - arxiv preprint arxiv …, 2022 - arxiv.org
Graph clustering, which aims to divide nodes in the graph into several distinct clusters, is a
fundamental yet challenging task. Benefiting from the powerful representation capability of …

On the unreasonable effectiveness of feature propagation in learning on graphs with missing node features

E Rossi, H Kenlay, MI Gorinova… - Learning on graphs …, 2022 - proceedings.mlr.press
Abstract While Graph Neural Networks (GNNs) have recently become the de facto standard
for modeling relational data, they impose a strong assumption on the availability of the node …

Learning strong graph neural networks with weak information

Y Liu, K Ding, J Wang, V Lee, H Liu, S Pan - Proceedings of the 29th …, 2023 - dl.acm.org
Graph Neural Networks (GNNs) have exhibited impressive performance in many graph
learning tasks. Nevertheless, the performance of GNNs can deteriorate when the input …

On positional and structural node features for graph neural networks on non-attributed graphs

H Cui, Z Lu, P Li, C Yang - Proceedings of the 31st ACM International …, 2022 - dl.acm.org
Graph neural networks (GNNs) have been widely used in various graph-related problems
such as node classification and graph classification, where the superior performance is …

From data to insights: the application and challenges of knowledge graphs in intelligent audit

H Zhong, D Yang, S Shi, L Wei, Y Wang - Journal of Cloud Computing, 2024 - Springer
In recent years, knowledge graph technology has been widely applied in various fields such
as intelligent auditing, urban transportation planning, legal research, and financial analysis …