A comprehensive survey on deep graph representation learning
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …
structured data into low-dimensional dense vectors, which is a fundamental task that has …
Multimodal learning with graphs
Artificial intelligence for graphs has achieved remarkable success in modelling complex
systems, ranging from dynamic networks in biology to interacting particle systems in physics …
systems, ranging from dynamic networks in biology to interacting particle systems in physics …
Recipe for a general, powerful, scalable graph transformer
We propose a recipe on how to build a general, powerful, scalable (GPS) graph Transformer
with linear complexity and state-of-the-art results on a diverse set of benchmarks. Graph …
with linear complexity and state-of-the-art results on a diverse set of benchmarks. Graph …
Do transformers really perform badly for graph representation?
The Transformer architecture has become a dominant choice in many domains, such as
natural language processing and computer vision. Yet, it has not achieved competitive …
natural language processing and computer vision. Yet, it has not achieved competitive …
Diffdock: Diffusion steps, twists, and turns for molecular docking
Predicting the binding structure of a small molecule ligand to a protein--a task known as
molecular docking--is critical to drug design. Recent deep learning methods that treat …
molecular docking--is critical to drug design. Recent deep learning methods that treat …
Rethinking graph transformers with spectral attention
In recent years, the Transformer architecture has proven to be very successful in sequence
processing, but its application to other data structures, such as graphs, has remained limited …
processing, but its application to other data structures, such as graphs, has remained limited …
Structure-aware transformer for graph representation learning
The Transformer architecture has gained growing attention in graph representation learning
recently, as it naturally overcomes several limitations of graph neural networks (GNNs) by …
recently, as it naturally overcomes several limitations of graph neural networks (GNNs) by …
Benchmarking graph neural networks
In the last few years, graph neural networks (GNNs) have become the standard toolkit for
analyzing and learning from data on graphs. This emerging field has witnessed an extensive …
analyzing and learning from data on graphs. This emerging field has witnessed an extensive …
Representing long-range context for graph neural networks with global attention
Graph neural networks are powerful architectures for structured datasets. However, current
methods struggle to represent long-range dependencies. Scaling the depth or width of …
methods struggle to represent long-range dependencies. Scaling the depth or width of …
Combinatorial optimization and reasoning with graph neural networks
Combinatorial optimization is a well-established area in operations research and computer
science. Until recently, its methods have focused on solving problem instances in isolation …
science. Until recently, its methods have focused on solving problem instances in isolation …