Ensemble deep learning: A review
Ensemble learning combines several individual models to obtain better generalization
performance. Currently, deep learning architectures are showing better performance …
performance. Currently, deep learning architectures are showing better performance …
Ensemble deep learning in bioinformatics
The remarkable flexibility and adaptability of ensemble methods and deep learning models
have led to the proliferation of their application in bioinformatics research. Traditionally …
have led to the proliferation of their application in bioinformatics research. Traditionally …
Interpretable machine learning: Fundamental principles and 10 grand challenges
Interpretability in machine learning (ML) is crucial for high stakes decisions and
troubleshooting. In this work, we provide fundamental principles for interpretable ML, and …
troubleshooting. In this work, we provide fundamental principles for interpretable ML, and …
Deep learning: a statistical viewpoint
The remarkable practical success of deep learning has revealed some major surprises from
a theoretical perspective. In particular, simple gradient methods easily find near-optimal …
a theoretical perspective. In particular, simple gradient methods easily find near-optimal …
Towards understanding ensemble, knowledge distillation and self-distillation in deep learning
We formally study how ensemble of deep learning models can improve test accuracy, and
how the superior performance of ensemble can be distilled into a single model using …
how the superior performance of ensemble can be distilled into a single model using …
Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation
M Belkin - Acta Numerica, 2021 - cambridge.org
In the past decade the mathematical theory of machine learning has lagged far behind the
triumphs of deep neural networks on practical challenges. However, the gap between theory …
triumphs of deep neural networks on practical challenges. However, the gap between theory …
Max-margin token selection in attention mechanism
Attention mechanism is a central component of the transformer architecture which led to the
phenomenal success of large language models. However, the theoretical principles …
phenomenal success of large language models. However, the theoretical principles …
[HTML][HTML] Self-training: A survey
Self-training methods have gained significant attention in recent years due to their
effectiveness in leveraging small labeled datasets and large unlabeled observations for …
effectiveness in leveraging small labeled datasets and large unlabeled observations for …
Reconciling modern machine-learning practice and the classical bias–variance trade-off
Breakthroughs in machine learning are rapidly changing science and society, yet our
fundamental understanding of this technology has lagged far behind. Indeed, one of the …
fundamental understanding of this technology has lagged far behind. Indeed, one of the …
What is machine learning? A primer for the epidemiologist
Abstract Machine learning is a branch of computer science that has the potential to transform
epidemiologic sciences. Amid a growing focus on “Big Data,” it offers epidemiologists new …
epidemiologic sciences. Amid a growing focus on “Big Data,” it offers epidemiologists new …